|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题11 三角形中的重要模型-特殊三角形中的分类讨论模型(原卷版).docx
    • 解析
      专题11 三角形中的重要模型-特殊三角形中的分类讨论模型(解析版).docx
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)01
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)02
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)03
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)01
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)02
    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)

    展开
    这是一份专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题11三角形中的重要模型-特殊三角形中的分类讨论模型原卷版docx、专题11三角形中的重要模型-特殊三角形中的分类讨论模型解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
    1)无图需分类讨论
    ①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;
    ③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
    2)“两定一动”等腰三角形存在性问题:
    即:如图:已知,两点是定点,找一点构成等腰
    方法:两圆一线
    具体图解:①当时,以点为圆心,长为半径作⊙,点在⊙上(,除外)

    ②当时,以点为圆心,长为半径作⊙,点在⊙上(,除外)
    ③当时,作的中垂线,点在该中垂线上(除外)
    例1.(2023春·四川成都·八年级校考期中)已知等腰三角形的两边长分别是,,若,满足,那么它的周长是( )
    A.11B.13C.11或13D.11或15
    例2.(2023春·黑龙江佳木斯·八年级校考期中)一个等腰三角形的周长为18cm,且一边长是4cm,则它的腰长为( )
    A.4cmB.7cmC.4cm或7cmD.全不对
    例3.(2023春·四川达州·八年级校考阶段练习)等腰三角形的一个角是,则它顶角的度数是( )
    A.B.或C.或D.
    例3.(2023·四川广安·八年级校考期中)等腰三角形的一个外角为,则它的底角为( )
    A.B.C.或D.以上都不是
    例4.(2023·四川绵阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为,则等腰三角形的顶角度数为 .
    例5.(2023·山东滨州·八年级校考期末)我们称网格线的交点为格点.如图,在6行列的长方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,则满足条件的格点C的个数是( )
    A.3B.4C.5D.6
    例6.(2023·北京·八年级期中)Rt△ABC中,∠BAC=90°,AB=AC=2,以AC为一边.在△ABC外部作等腰直角三角形ACD,则线段BD的长为____.
    例7.(2023·福建南平·八年级校考期中)已知△ABC中,如果过顶点B的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的二分割线.如图1,Rt△ABC中,显然直线BD是△ABC的关于点B的二分割线.在图2的△ABC中,∠ABC=110°,若直线BD是△ABC的关于点B的二分割线,则∠CDB的度数是 .
    例8.(2023·四川成都·八年级校考期中)如图,A、B两点的坐标分别为,,点P是x轴上一点,且为等腰三角形,则点P的坐标为 .
    例9.(2023·江苏苏州·八年级校考期中)如图,中,,,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒().

    (1)若点在上,且满足,求此时的值;(2)若点恰好在的角平分线上,求此时的值:
    (3)在运动过程中,当为何值时,为等腰三角形.
    例10.(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O为坐标原点,经过的直线交x轴正半轴于点B,交y轴于点,直线交x轴负半轴于点D,若的面积为

    (1)求直线的表达式和点D的坐标;(2)横坐标为m的点P在线段上(不与点重合),过点P作x轴的平行线交于点E,设的长为,求y与m之间的函数关系式并直接写出相应的m取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使为等腰直角三角形?若存在求出点F的坐标;若不存在,请说明理由.
    模型2、直角三角形中的分类讨论模型
    【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。
    1)无图需分类讨论:①已知边长度无法确定是直角边还是斜边时要分类讨论;②已知无法确定是哪个角是直角时要分类讨论(常见与折叠、旋转中出现的直角三角形)。
    2)“两定一动”直角三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)
    即:如图:已知,两点是定点,找一点构成
    方法:两线一圆
    具体图解:①当时,过点作的垂线,点在该垂线上(除外)

    ②当时,过点作的垂线,点在该垂线上(除外)。
    ③当时,以为直径作圆,点在该圆上(,除外)。
    例1.(2023春·河南安阳·八年级校考期末)若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 .
    例2.(2023春·河南郑州·八年级校考期中)如图,是的角平分线,是的高,,,点F为边上一点,当为直角三角形时,则的度数为 .
    例3.(2022秋·河南新乡·八年级校考期末)如图,在4×4的正方形网格中有两个格点A,B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
    A.1个B.2个C.3个D.4个
    例4.(2022·江西九江·八年级期末)已知在平面直角坐标系中A(﹣2,0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为________.
    例5.(2022秋·辽宁丹东·八年级校考期中)在△ABC中,∠BAC=90°,AB=AC=4,以AC为一边,在△ABC外作等腰直角△ACD,则线段BD的长为 .
    例6.(2023春·山东东营·八年级校考阶段练习)如图,长方形中,,,点为射线上的一个动点,若与关于直线对称,若为直角三角形,则的长为 .
    例7.(2023秋·浙江绍兴·八年级统考期末)如图,在中,,,点D是边上的点,将沿折叠得到,线段与边交于点F.若为直角,则的长是 .
    例8.(2023秋·河南商丘·八年级校考期中)如图,中,cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为,点N的速度为.当点N第一次到达B点时,M、N同时停止运动.
    (1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形?
    (3)当点M、N在边上运动时,能否得到以为底边的等腰三角形?如存在,请求出此时M、N运动的时间.(4)点M、N运动______________________后,可得到直角三角形.

    例9.(2023秋·河南漯河·八年级校考期末)如图,等边三角形中,D、E分别是、边上的点,,与相交于点P,,Q是射线上的动点.
    (1)图中共有__________组全等,请选择其中的一组全等予以证明.(2)若为直角三角形,求的值.

    例10.(2023·四川成都·八年级校考期末)如图1,在平面直角坐标系中,点A的坐标为(-4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC-OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(-4,0)和N(2,0)是x轴上的两个点,点P是直线AB上一点.当△PMN是直角三角形时,请求出满足条件的所有点P的坐标.
    课后专项训练
    1.(2023·福建龙岩·八年级校考期中)在平面直角坐标系xOy中,点,,若点C在x轴上,且为等腰三角形,则满足条件的点C的个数为( )
    A.1B.2C.3D.4
    2.(2022·山东青岛·统考二模)在平面直角坐标系中,为坐标原点,点的坐标为,若为轴上一点,且使得为等腰三角形,则满足条件的点有( )
    A.2个B.3个C.4个D.5个
    3.(2022·安徽淮北·九年级阶段练习)如图,在中,,,.若点P为直线BC上一点,且为等腰三角形,则符合条件的点P有( ).
    A.1个B.2个C.3个D.4个
    4.(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系 ,在坐标轴上取一点M使△MAB 为等腰三角形,符合条件的 M 点有( )
    A.6个 B.7个 C.8个 D.9个
    5.(2023·四川凉山·八年级校考期中)等腰三角形一腰上的高与另一腰的夹角是,则底角是 .
    6.(2023春·四川达州·八年级校考阶段练习)我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为 度.
    7.(2022·河南平顶山·八年级期末)如图,中,,,的平分线与线段交于点,且有,点是线段上的动点(与A、不重合),连接,当是等腰三角形时,则的长为___________.
    8.(2023·上虞市初二月考)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有________个.
    9.(2022·河南·郑州八年级阶段练习)如图,已知等腰△ABC中,ABAC5,BC8,E是BC上的一个动点,将△ABE沿着AE折叠到△ADE处,再将边AC折叠到与AD重合,折痕为AF,当△DEF是等腰三角形时,BE的长是___________.
    10.(2022·河南南阳·二模)如图,在的纸片中,,,.点在边上,以为折痕将折叠得到,与边交于点.若为直角三角形,则的长是_______.
    11.(2022·江西萍乡·二模)如图,在△ABC 中,AB=BC=2,AO=BO,P 是射线 CO 上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP 的长为____.
    12.(2023春·江西鹰潭·八年级校考阶段练习)如图,在中,已知,,.,在直线上.现将在直线上进行平移,当为直角三角形时,的长为 .
    13.(2022秋·四川成都·八年级校考期中)如图,四边形是一张长方形纸片,将其放在平面直角坐标系中,使得点与坐标原点重合,点、分别在轴、轴的正半轴上,点的坐标为,的坐标为,现将纸片沿过点的直线折叠,使顶点落在线段上的点处,折痕与轴的交点记为.
    (1)求点的坐标和的大小;(2)在轴正半轴上是否存在点,满足,若存在,求出点坐标,若不存在请说明理由;(3)点在直线上,且为等腰三角形,请直接写出点的坐标.
    14.(2023秋·浙江杭州·八年级校联考期末)如图,在平面直角坐标系中,O是坐标原点,长方形的顶点A、B分别在x轴与y轴上,已知,,点D为y轴上一点,其坐标为,点P从点A出发以每秒1个单位的速度沿线段的方向运动,当点P与点B重合时停止运动.
    (1)当点P与点C重合时,求直线的函数解析式;(2)设运动时间为t秒.当点P在运动过程中,
    ①求的面积S关于t的函数解析式;②是否存在等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
    15.(2022春·四川成都·八年级校考阶段练习)如图,平面直角坐标系中,直线交轴于点,交轴于点,点是线段上一动点(不与点重合),过点作于点.
    (1)当点是中点时,求的面积;(2)连接,若平分,求此时点的坐标;
    (3)平分,在轴上有一动点,横坐标为,过点作直线轴,与线段有交点,求的取值范围;(4)平分,为轴上动点,为等腰三角形,求坐标.
    16.(2023春·吉林长春·八年级校考阶段练习)如图,在的正方形网格中,每个小正方形的边长为1个单位长度,存在线段,端点A,B均落在格点上,构建如图所示平面直角坐标系.
    (1)直接写出点A,B的坐标:A(______,______), B(______,______);
    (2)请在网格中找到点C,连接,,使为等腰直角三角形,此时点C的坐标为______;
    (3)如图所示,网格中(包括网格的边界)存在点P,点P的横纵坐标均为整数,连接,,得到锐角,且为等腰三角形,则满足条件的点P有_____个.
    17.(2023秋·浙江金华·八年级校联考阶段练习)在平面直角坐标系中,点A的坐标为(-1,0),点B是直线上的动点,连接AB,设点B的横坐标为.
    (1)如图1,当时,以AB为直角边在AB下方作等腰直角三角形ABC,使,求点C的坐标.
    (2)如图2,把线段AB绕点A顺时针旋转得到线段AD,当点B在直线上运动时,点D也随之运动,连接OD,求AOD的面积(用含的代数式表示).
    (3)在图3中以AB为直角边作等腰直角三角形ABE,当点E落在直线上时,求的值.
    18.(2023秋·四川成都·八年级校考期末)如图,在平面直角坐标系内,点O为坐标原点,经过A(-2,6)的直线交x轴正半轴于点B,交y轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为27.
    (1)求直线AD的解析式;(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y(y≠0),求y与m之间的函数关系式并直接写出相应的m的取值范围;
    (3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.
    19.(2023秋·四川成都·八年级统考期末)如图1,在平面直角坐标系中,点A的坐标为,点B的坐标为.(1)求直线的表达式;(2)点M是坐标轴上的一点,若以为直角边构造,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作,射线交x轴的正半轴于点C,射线交y轴的负半轴于点D,当绕点A旋转时,求的值.
    20.(2022秋·四川成都·八年级校考期中)如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线交x轴的正半轴于点C,且面积为10.
    (1)求直线BC的解析式;(2)如图1,若点M为线段BC上一点,且满足,求点M的坐标;
    (3)如图2,点F为线段AB中点,点G为y轴上任意一点,连接FG,以FG为腰,G为直角顶点,在FG右侧作等腰直角,当顶点Q落在直线BC上时,求点的坐标.
    相关试卷

    专题07 三角形中的重要模型-等积模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用): 这是一份专题07 三角形中的重要模型-等积模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题07三角形中的重要模型-等积模型原卷版docx、专题07三角形中的重要模型-等积模型解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    专题16 全等与相似模型-半角模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用): 这是一份专题16 全等与相似模型-半角模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题16全等与相似模型-半角模型原卷版docx、专题16全等与相似模型-半角模型解析版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。

    专题09 三角形中的重要模型-弦图模型、勾股树模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用): 这是一份专题09 三角形中的重要模型-弦图模型、勾股树模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题09三角形中的重要模型-弦图模型勾股树模型原卷版docx、专题09三角形中的重要模型-弦图模型勾股树模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题11 三角形中的重要模型-特殊三角形中的分类讨论模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map