精品解析:2023年广东省深圳市南山区九年级数学十校联考数学试卷
展开1. 如图,该几何体左视图是( )
A. B.
C D.
2. 国家卫健委网站消息:截至2022年5月27日,31个省(自治区,直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过33亿剂次,用科学记数法表示33亿是( )
A. B. C. D.
3. “天宫课堂”第二课3月23日在中国空间站开讲,包括六个项目:太空“冰雪”实验、液桥演示实验、水油分离实验、太空抛物实验、空间科学设施介绍与展示、天地互动环节.若随机选取一个项目写观后感,则恰好选到“实验”项目的概率是( )
A. B. C. D.
4. 下列算式中,正确是( )
A. B. C. D.
5. 超市货架上有一批大小不一鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差1,,则下列结论一定成立的是( )
A. 1B. 1C. s2>D. s2
6. 实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是( )
A. 2B. -1C. -2D. -3
7. 如图,△ABC的顶点A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( )
A. 30°B. 45°C. 60°D. 70°
8. 如图,在平行四边形ABCD中,AB=5,BC=8,以点D为圆心,任意长为半径画弧,交AD于点P,交CD于点Q,分别以P、Q为圆心,大于PQ为半径画弧交于点M,连接DM并延长,交BC于点E,连接AE,恰好有AE⊥BC,则AE的长为( )
A. 3B. 4C. 5D.
9. 已知抛物线(a,b,c均为常数,)的顶点是,且该抛物线经过点,,若,则的取值范围是( )
A. B. C. D. 且
10. 如图,△ABC中,∠ABC=45°,BC=4,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为( )
A. B. C. D. 2
二、填空题(本大题共5小题,每小题3分,共15分)
11. 因式分解:2a2﹣8=_____.
12. 函数y=中自变量x的取值范围是________
13. 一桶油漆能刷的面积,用它恰好刷完10个同样的正方体形状盒子的全部外表面.设其中一个盒子的棱长为xdm,则可列出方程:______.
14. 一个正多边形内接于半径为4的⊙O,AB是它的一条边,扇形OAB的面积为,则这个正多边形的边数是______.
15. 如图,在矩形中,,,点N是边上的中点,点M是边上的一动点连接,将沿折叠,若点B的对应点,连接,当为直角三角形时,的长为 _____.
三、解答题(本题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分.共55分)
16. 计算:.
17. 先化简,再求值:,其中x=1
18. 如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑物底端B出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D在同一平面内),斜坡CD的坡度(或坡比)i=1:2.4,求建筑物AB的高度.(精确到个位)(参考数据:sin=27°≈0.45,cs27°≈0.89,tan27°≈0.51)
19. 如图,在中,与分别相切于点E,F,平分,连接.
(1)求证:是的切线;
(2)若,的半径是2,求图中阴影部分的面积.
20 端午节前夕,某大型超市采购了一批礼盒进行销售,这批礼盒有甲型和乙型两种共600个,其进价与标价如下表所示(单位:元):
(1)该超市将甲型礼盒按标价的九折销售,乙型礼盒按标价进行销售,当销售完这批礼盒后可获利9200元,求该商场购进甲型、乙型这两种礼盒各多少个?
(2)这批礼盒销售完毕后,该超市计划再次按原进价购进甲、乙两种礼盒共200个,且均按标价进行销售,请问如何进货能保证这批礼盒销售完之后获得利润最大,且利润不能超过成本的25%.
21. 在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:
在函数中,当时,;当时,.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;
(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
(4)若方程有四个不相等的实数根,则实数的取值范围是______.
22. (1)证明推断:如图(1),在正方形中,点E,Q分别在边上,于点O,点G,F分别在边上,.求证:;
(2)类比探究:如图(2),在矩形中,(k为常数).将矩形沿折叠,使点A落在边上的点E处,得到四边形交于点H,连接交于点O.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,求的长.
进价
标价
甲型
90
120
乙型
50
60
精品解析:2023年广东省深圳市南山区中考二模数学试卷: 这是一份精品解析:2023年广东省深圳市南山区中考二模数学试卷,文件包含精品解析2023年广东省深圳市南山区中考二模数学试卷原卷版docx、精品解析2023年广东省深圳市南山区中考二模数学试卷解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
2023年广东省深圳市南山区十校联考中考数学模拟试卷(含答案): 这是一份2023年广东省深圳市南山区十校联考中考数学模拟试卷(含答案),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市南山区十校联考中考数学模拟试卷及答案解析: 这是一份2023年广东省深圳市南山区十校联考中考数学模拟试卷及答案解析,共18页。