四川省成都市石室中学2023-2024学年高三上学期一诊模拟数学试题(文)A卷(Word版附解析)
展开(总分:150分,时间:120分钟 )
第Ⅰ卷(共60分)
一、选择题(本题共12道小题,每小题5分,共60分)
1.已知集合,则( )
A.B.C.D.
2.已知纯虚数满足,则( )
A. B. C. D.
3.某公司一种型号的产品近期销售情况如表:
根据上表可得到回归直线方程,据此估计,该公司7月份这种型号产品的销售额约为( )
A.18.85万元 B.19.3万元 C.19.25万元 D.19.05万元
4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体最长的棱长为( )
A. B. C. D.
5.下列说法正确的是( )
A.已知非零向量,,,若,则
B.设x,,则“”是“且”的充分不必要条件
C.用秦九韶算法求这个多项式的值,当时,的值为14
D.从装有2个红球和2个黑球的口袋内任取2个球,“至少有一个黑球”与“至少有一个红球”是两个互斥且不对立的事件
6.已知,,则( )
A.B.C.D.
7.公差为的等差数列的首项为,其前项和为,若直线与圆的两个交点关于直线对称,则数列的前100项和等于( )
A.B.C.D.1
8.已知函数的图象如图所示,则( )
A.a>0,b>0,c<0,d<0B.a<0,b>0,c<0,d>0
C.a<0,b>0,c>0,d>0D.a>0,b<0,c>0,d>0
9.如图,棱长为2的正方体中,点P在线段上运动,以下四个命题:
①三棱锥的体积为定值;②;③若,则三棱锥的外接球半径为;④的最小值为.其中真命题有( )
A.①②③B.①②④C.①②③④D.③④
10.执行如图所示的程序框图,则输出的值与下面的哪个数最接近?( )
A. B. C. D.
11.已知函数有三个零点,且,则的取值范围是( )
A. B.C.D.
12.已知双曲线的右焦点为,,直线与抛物线的准线交于点,点为双曲线上一动点,且点在以为直径的圆内,直线与以为直径的圆交于点,则的最大值为( )
A.80 B.81 C.72 D.71
第Ⅱ卷(共90分)
填空题(本题共4道小题,每小题5分,共20分)
13.抛物线的焦点坐标为 .
14.如图所示的茎叶图记录着甲、乙两支篮球是各6名球员某份比赛的得分数据(单位:分).若这两组数据的中位数相等,且平均值也相等,则 .
在等腰直角三角形中,,为斜边的中点,以为圆心,为半径作,点在线段上,点在上,则的取值范围是 .
已知函数,不等式对任意的恒成立,则的最大值为 .
三、解答题(本题共6道小题,共70分)
17.(本小题满分12分)已知向量,,函数.
(1)若,求的值;
(2),,为的内角,,的对边,,且,求面积的最大值.
18.(本小题满分12分)下图甲是由直角梯形ABCD和等边三角形CDE组成的一个平面图形,其中,,,将沿CD折起使点E到达点P的位置(如图乙),使二面角为直二面角.
(1)证明: ;
(2)求点到平面的距离.
19.(本小题满分12分)石室中学社团为庆祝石室中学2166年校庆,为同学们准备了礼物,计划采用无人机空投的形式发放,进行游戏.现有甲、乙两种类型无人机性能都比较出色,但为了确保实际空投过程中的学生安全得到保障,需预先进行测试。现在社团分别收集了甲、乙两种类型无人机在5个不同的地点测试的某项指标数,,数据如下表所示:
(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系;(若,则线性相关程度很高)
(2)从这5个地点中任抽2个地点,求抽到的这2个地点,甲型无人机指标数均高于乙型无人机指标数的概率.
附:相关公式及数据:,.
20.(本小题满分12分)已知函数.
(1)若时,求曲线在点处的切线方程;
(2)若时,求函数的零点个数;
(3)若对于任意,恒成立,求的取值范围.
21.(本小题满分12分)已知为的两个顶点,为的重心,边上的两条中线长度之和为.
(1)求点的轨迹的方程;
(2)过作不平行于坐标轴的直线交于D,E两点,若轴于点M,轴于点N,直线DN与EM交于点Q.
①求证:点Q在一条定直线上,并求此定直线;
②求面积的最大值.
选考题:共10分。请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
[选修4-4:坐标系与参数方程](10分)
22.(本小题满分10分)在直角坐标系xOy中,曲线的参数方程为(为参数且),分别与x轴、y轴交于A、B两点.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)与坐标轴交于A,B两点,求;
(2)求上的点到直线AB距离的范围.
[选修4-5:不等式选讲](10分)
23.(本小题满分10分)已知函数.
(1)当时,求不等式的解集;
(2)若的最小值为,求的最小值.成都石室中学2023-2024年度上期高2024届一诊模拟
文科数学(A卷)参考答案
1.B 【解析】,,故.故选:B.
2. A 【解析】令,则,故,.故选:A.
3. D 【解析】由表中数据可得,,
因为回归直线过样本点的中心,所以,解得,
所以回归直线方程为,
则该公司7月份这种型号产品的销售额为万元.
故选:D.
4. B 【解析】由三视图可知多面体是如图所示的三棱锥,由图可知
,,
所以最长的棱长为.
故选:B.
5. C 【解析】对于A选项,若,则,所以,不能推出,故A错误;
对于B选项,成立时,必有成立,
反之,取,则成立,但不成立,
因此“” 是“”的必要不充分条件,故B错误;
对于选项C,因为,
所以可以把多项式写成如下形式:,
按照从内而外的顺序,依次计算一次多项式当的值:
,,,,故C正确;
对于选项D,至少有一个黑球包含的基本事件有“一黑一红,两黑”,至少有一个红球包含的基本事件有“一黑一红,两红”,所以两事件不互斥,故D错误;
故选:C.
6. D 【解析】因为,,
所以平方得,,,
即,,
两式相加可得,
即,
故,
.
故选:D.
7. A 【解析】因为直线与圆的两个交点关于直线对称,
所以直线经过圆心,且直线与直线垂直,
所以,即,且,
则,,
所以数列的前100项和为.
故选:A.
8. B 【解析】由图可知,且,
则的两根为1,5,
由根与系数的关系,得-=6,=5,
∴a,b异号,a,c同号,排除A、C;
又f(0)=<0,∴c,d异号,排除D,只有B项适合.
故选:B
9.A 【解析】正方体中,,所以四边形为平行四边形,所以,
又平面,平面,
所以平面,即当点P在线段上运动时恒为定值,
又, 也为定值,
所以三棱锥的体积为定值,①正确;
在正方体中,平面,平面,所以,
在正方形中:,
又,平面,所以平面,
又平面,所以,②正确;
因为点P在线段上运动, 若,则点P与点A重合,则三棱锥的外接球即为三棱锥的外接球,故半径为,③正确;
如图所示:将三角形沿翻折得到该图形,连接与相交于点,此时取得最小值,延长,过作于点,
在中,,
故的最小值为,④错误.
故选:A.
10. B 【解析】该程序框图相当于在[0,3]上任取10000对数对,其中满足的数对有对.显然该问题是几何概型.
不等式组所表示的区域面积为9,
所表示的区域面积为,
故,因此.
故选:B.
11. D 【解析】令,得,整理得.
令,,原方程化为.
设,
则,令,解得,且,
当时,,则单调递增,
当时,,则单调递减,
则在时,有最大值为,
画出简图,如右图所示,
因为原方程为.
由题可知有三个零点,因此方程有两个不等实根.
结合图象可得:,
设,则,得到,
因为,所以.
故选:D.
12. A 【解析】由题可知,点在以为直径的圆上,故,连接、,如图所示,可得,其中
由图可知,当点运动到双曲线右顶点时,即当时, 取最大值为80.
故选:A.
13. 【解析】抛物线的标准方程为,焦点在轴正半轴上,焦点坐标为.
14. 【解析】由题意得,甲的中位数为:,故乙的中位数①
,
,
因为平均数相同,所以②,
由①②可得,,
所以,
故答案为:.
15.【解析】以为圆心,以为轴,建立如图所示的平面直角坐标系,
由于所以,
由于点在,不妨设 ,,
,其中,
,
所以,
可看作是上的点到点的距离,
由于点在线段上运动,
故当点运动到点时,此时距离最大,为,
当点运动到点时,此时距离最小为0,
综上可知:.
16.【解析】因为,
所以为上的奇函数.
又,
所以在上单调递增.
不等式对任意的恒成立,
即对任意的恒成立,
所以对任意的恒成立,
即对任意的恒成立.
令,所以,
所以当时,,在上为增函数;
当时,,在上为减函数.
所以,
设,显然为上的增函数,
因为,,所以存在,使得,
所以,此时,
所以,即的最大值为1.
故答案为:1.
17.解:(1),,则;----------------------------------------------------2分
.------------------------------------------------5分
(2),----------------------------------------------------------------------------7分
又,所以,,得,即,------------------------------------8分
因为,且由余弦定理可知,,
所以,
由基本不等式可得,
所以,(当且仅当时取等)---------------------------------------------------------------------------11分
故,
即面积最大值为.-----------------------------------------------------------------------------------------------12分
(注:若求角的函数值域问题,按步骤对应给分)
18.(1)证明:取AD中点为F,连接AC,CF,由得且.
∴四边形ABCF为平行四边形,
∴,
∴,--------------------------------------2分
又因为二面角为直二面角,且平面平面,
∴平面PCD,因为平面PCD,
所以.--------------------------------------5分
(2) 解:过点作于点,过点作于点,连接.
因为,所以,-----------------------------------------------------------------------6分
所以.---------------------------------------------------------7分
因为,
在中,,
在中,,
所以.---------------------------------------------------------------------------------------------------9分
令点到平面距离为,
所以,
,------------------------------------------------------------------------------------------11分
即点到平面距离为.------------------------------------------------------------------------------------------12分
19.解:(1),,----------------------------------------------------1分
所以,
由于,------------------------------------------3分
相关系数,-------------------------------------------------5分
因为,所以与具有较强的线性相关关系.---------------------------------------------------------------6分
(2)将地点1,2,3,4,5分别记为,,,,,----------------------------------------------------7分
任抽2个地点的可能情况有:,,,,,,,,,,共10种情况,-------------------------------------------------------------------------------------------9分
其中在地点3,4,5,甲型无人机指标数均高于乙型运输机指标数,即,,3种情况,
------------------------------------------------------------------------------------------------------------------------------------11分
令甲型无人机指标数均高于乙型无人机指标数为事件M,
故所求概率.-------------------------------------------------------------------------------------------------12分
20.解:(1)函数,因为,所以切点为,------------------1分
由,得,
所以曲线在点处的切线斜率为0,-----------------------------------------------------------------------------2分
所以曲线在点处的切线方程为.-----------------------------------------------------------3分
(2)由(1)可知,
因为,所以,令,则.--------------------------------------------------4分
当时,,单调递减;
当时,,单调递增;
又因为,,-------------------------------------------------6分
所以,由零点存在定理可知,存在唯一的使得,存在唯一的使得.故函数有且仅有两个零点.---------------------------------------------------------------------------7分
(3)因为,当时,由得----------------------------------------------------9分
下面证明:当时,对于任意,恒成立,
即证,即证;
而当时,,------------10分
由(2)知,;所以时,恒成立;
综上所述,.--------------------------------------------------------------------------------------------------12分
21.解:(1)因为为的重心,且边上的两条中线长度之和为6,
所以,-------------------------------------------------------------------------------1分
故由椭圆的定义可知的轨迹是以为焦点的椭圆(不包括长轴的端点),
且,所以,-----------------------------------------------------------------------------------------2分
所以的轨迹的方程为.------------------------------------------------4分,未挖点扣1分
(2)①依题意,设直线DE方程为.
联立,得,
易知
设,,则,.-----------------------------------------------5分
因为轴,轴,
所以,.
所以直线DN:,
直线EM:,
联立解得.----------------------------------7分
从而点Q在定直线上. --------------------------------------------------------------------------------------------------8分
②因为,----------------------------------------------9分
又,则,
------------------------------------------------------------------------------------------------------------------------------------10分
设,则,
当且仅当,即时,等号成立,
故面积的最大值为.--------------------------------------------------------------------------------------------12分
22.解:(1)令,则,解得,或(舍),
则,即,--------------------------------------------------------------------------------------2分
令,则,解得,或(舍),
则,即,-------------------------------------------------------------------------------4分
∴.----------------------------------------------------------------------------------------5分
(2)曲线的极坐标方程为,即,
由,得的普通方程为,-------------------------------------------------------6分
设上点的坐标为,-----------------------------------------------------------------------------------7分
由(1)知直线AB的方程为,
令上的点到直线AB的距离为,
则,---------------------------------------------------------9分
所以上的点到直线AB的距离为.--------------------------------------------------------------10分
23.解:(1)当时,不等式可化为,
∴,或,或,---------------------------------------------------------------------2分
解得或 或,----------------------------------------------------------------------4分
求并集得:,
所以原不等式的解集为.----------------------------------------------------------------------------------------5分
(2)因为,
当且仅当时,即时取到最小值,--------------------------------6分
又因为,所以,所以, ------------------------------------------7分
所以,
因为,---------------------------9分
当且仅当时,即时,
的最小值为.---------------------------------------------------------------------10分月份
2
3
4
5
6
销售额(万元)
15.1
16.3
17.0
17.2
18.4
地点1
地点2
地点3
地点4
地点5
甲型无人机指标数x
2
4
5
6
8
乙型无人机指标数y
3
4
4
4
5
四川省成都市石室中学2023-2024学年高一上学期期中数学试题(Word版附解析): 这是一份四川省成都市石室中学2023-2024学年高一上学期期中数学试题(Word版附解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省成都市石室中学2023-2024学年高三上学期一诊模拟数学试题(理)A卷(Word版附解析): 这是一份四川省成都市石室中学2023-2024学年高三上学期一诊模拟数学试题(理)A卷(Word版附解析),共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
四川省成都市石室中学2022届高三上学期期末数学(文)试题(Word版附解析): 这是一份四川省成都市石室中学2022届高三上学期期末数学(文)试题(Word版附解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。