- (小白高考)新高考数学(零基础)一轮复习教案6.4《数列求和及综合应用》 (2份打包,原卷版+教师版) 教案 0 次下载
- (小白高考)新高考数学(零基础)一轮复习教案7.1《空间几何体及其表面积、体积》 (2份打包,原卷版+教师版) 教案 0 次下载
- (小白高考)新高考数学(零基础)一轮复习教案7.3《直线、平面平行的判定与性质》 (2份打包,原卷版+教师版) 教案 0 次下载
- (小白高考)新高考数学(零基础)一轮复习教案7.4《直线、平面垂直的判定与性质》 (2份打包,原卷版+教师版) 教案 0 次下载
- (小白高考)新高考数学(零基础)一轮复习教案7.5《空间向量及其应用》 (2份打包,原卷版+教师版) 教案 0 次下载
(小白高考)新高考数学(零基础)一轮复习教案7.2《空间点、直线、平面之间的位置关系》 (2份打包,原卷版+教师版)
展开1.理解空间直线、平面位置关系的定义,提升空间想象能力,凸显直观想象的核心素养.
2.了解可以作为推理依据的公理和定理,培养阅读理解能力,凸显数学抽象的核心素养.
3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题,培养分析问题、解决问题的能力,凸显逻辑推理的核心素养.
[理清主干知识]
1.公理1~3
[提醒] 公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.
2.公理2的三个推论
推论1:经过一条直线和这条直线外一点有且只有一个平面;
推论2:经过两条相交直线有且只有一个平面;
推论3:经过两条平行直线有且只有一个平面.
3.空间中两条直线的位置关系
(1)位置关系分类:
位置关系eq \b\lc\{\rc\ (\a\vs4\al\c1(共面直线\b\lc\{\rc\ (\a\vs4\al\c1(相交直线:同一平面内,有且只有一个公共点;,平行直线:同一平面内,没有公共点;)),异面直线:不同在任何一个平面内,没有公共点.))
(2)平行公理(公理4)和等角定理:
①平行公理:平行于同一条直线的两条直线互相平行.
②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
4.异面直线所成的角
(1)定义:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)范围:eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2))).
5.空间中直线与平面、平面与平面的位置关系
(1)直线与平面的位置关系有相交、平行、在平面内三种情况.
(2)平面与平面的位置关系有平行、相交两种情况.
[澄清盲点误点]
一、关键点练明
1.已知a,b是异面直线,直线c平行于直线a,那么c与b( )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
2.下列命题正确的是( )
A.经过三点确定一个平面
B.经过一条直线和一个点确定一个平面
C.四边形确定一个平面
D.两两相交且不共点的三条直线确定一个平面
3.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )
A.30° B.45° C.60° D.90°
4.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( )
A.梯形 B.矩形 C.菱形 D.正方形
二、易错点练清
1.下列关于异面直线的说法正确的是( )
A.若a⊂α,b⊂β,则a与b是异面直线
B.若a与b异面,b与c异面,则a与c异面
C.若a,b不同在平面α内,则a与b异面
D.若a,b不同在任何一个平面内,则a与b异面
2.(忽视直线在平面内)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )
A.b⊂α B.b∥α C.b⊂α或b∥α D.b与α相交或b⊂α或b∥α
3.如图所示,已知在长方体ABCDEFGH中,AB=2eq \r(3),AD=2eq \r(3),AE=2,则BC和EG所成角的大小是________;AE和BG所成角的大小是________.
考点一 平面的基本性质及应用
[典例] 如图,在正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:
(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
[方法技巧]
1.证明点或线共面问题的2种方法
(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;
(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合.
2.证明点共线问题的2种方法
(1)先由两点确定一条直线,再证其他各点都在这条直线上;
(2)直接证明这些点都在同一条特定直线(如某两个平面的交线)上.
3.证明线共点问题的常用方法
先证其中两条直线交于一点,再证其他直线经过该点.
[针对训练]
1.如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )
A.A,M,O三点共线
B.A,M,O,A1不共面
C.A,M,C,O不共面
D.B,B1,O,M共面
2.如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.
(1)求证:E,F,G,H四点共面;
(2)设EG与FH交于点P,求证:P,A,C三点共线.
考点二 空间两条直线的位置关系
[典例] (1)(多选)下列结论正确的是( )
A.在空间中,若两条直线不相交,则它们一定平行
B.平行于同一条直线的两条直线平行
C.一条直线和两条平行直线中的一条相交,那么它也和另一条相交
D.空间中四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c
(2)已知α是一个平面,m,n是两条不同的直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )
A.垂直 B.相交 C.异面 D.平行
[方法技巧] 空间两直线位置关系的判定方法
[针对训练]
1.(多选)如图是一个正方体的平面展开图,则在该正方体中( )
A.AE∥CD B.CH∥BE C.DG⊥BH D.BG⊥DE
考点三 异面直线所成的角
[典例] (1)在正三棱柱ABCA1B1C1中,若AA1=2AB,D是AA1的中点,则BD与A1C1所成角的余弦值为( )
A.eq \f(1,2) B.eq \f(\r(2),4) C.eq \f(\r(2),2) D.eq \f(2\r(2),3)
(2)在四面体ABCD中,BD⊥AD,CD⊥AD,BD⊥BC,BD=AD=1,BC=2,则异面直线AB与CD所成角的余弦值为( )
A.eq \f(\r(10),5) B.eq \f(3\r(10),10) C.eq \f(\r(15),5) D.eq \f(\r(10),10)
[方法技巧] 平移法求异面直线所成角的步骤
[针对训练]
1.在长方体ABCDA1B1C1D1中,AB=1,AD=2,AA1=3,则异面直线A1B1与AC1所成角的余弦值为( )
A.eq \f(\r(14),14) B.eq \f(8\r(3),14) C.eq \f(\r(13),13) D.eq \f(1,3)
2.已知A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4.若球O的体积为8eq \r(6)π,则异面直线PB与AC所成角的余弦值为________.
eq \a\vs4\al([课时跟踪检测])
一、基础练——练手感熟练度
1.(多选)下列推断中,正确的是( )
A.A∈l,A∈α,B∈l,B∈α⇒l⊂α
B.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l⊄α,A∈l⇒A∉α
D.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合
2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )
A.相交或平行 B.相交或异面
C.平行或异面 D.相交、平行或异面
3.下列命题中,错误命题的个数为( )
①直线a与平面α不平行,则直线a与平面α内的所有直线都不平行;
②直线a与平面α不垂直,则直线a与平面α内的所有直线都不垂直;
③异面直线a,b不垂直,则过直线a的任何平面与直线b都不垂直;
④若直线a和b共面,直线b和c共面,则直线a和c共面.
A.1 B.2 C.3 D.4
4.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )
A.12对 B.24对 C.36对 D.48对
5.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.如图,四边形ABCD和四边形ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.
二、综合练——练思维敏锐度
1.设α,β为不重合的两个平面,m,n为不重合的两条直线,则下列命题正确的是( )
A.若α⊥β,α∩β=n,m⊥n,则m⊥α
B.若m⊂α,n⊂β,m∥n,则α∥β
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若n⊥α,n⊥β,m⊥β,则m⊥α
2.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列说法中正确的是( )
A.α∥β,m⊂α,n⊂β ⇒m∥n
B.α⊥γ,β⊥γ ⇒α∥β
C.α∥β,m∥n,m⊥α⇒n⊥β
D.α∩β=m,β∩γ=n,m∥n⇒α∥γ
3.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCDA1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为( )
A.eq \f(1,5) B.eq \f(2,5) C.eq \f(3,5) D.eq \f(4,5)
4.若平面α,β的公共点多于两个,则
①α,β平行;②α,β至少有三个公共点;③α,β至少有一条公共直线;④α,β至多有一条公共直线.
以上四个判断中不成立的个数为( )
A.0 B.1 C.2 D.3
5.如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )
A.CC1与B1E是异面直线
B.AC⊥平面ABB1A1
C.AE,B1C1为异面直线且AE⊥B1C1
D.A1C1∥平面AB1E
6.(多选)如图,在长方体ABCDA1B1C1D1中,AA1=AB=4,BC=2,M,N分别为棱C1D1,CC1的中点,则( )
A.A,M,N,B四点共面
B.平面ADM⊥平面CDD1C1
C.直线BN与B1M所成的角为60°
D.BN∥平面ADM
7.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.
8.如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为________(填序号).
9.如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成角的余弦值是________.
10.如图,在四棱锥OABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求四棱锥OABCD的体积;
(2)求异面直线OC与MD所成角的正切值.
文字语言
图形语言
符号语言
公理1
如果一条直线上的两点在一个平面内,那么这条直线在此平面内
eq \b\lc\ \rc\}(\a\vs4\al\c1(A∈l,B∈l,A∈α,B∈α)) ⇒l⊂α
公理2
过不在一条直线上的三点,有且只有一个平面
A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α
公理3
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
P∈α,且P∈β⇒α∩β=l,且P∈l
平移
平移的方法一般有三种类型:(1)利用图中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移
证明
证明所作的角是异面直线所成的角或其补角
寻找
在立体图形中,寻找或作出含有此角的三角形,并解之
取舍
因为异面直线所成角θ的取值范围是0°<θ≤90°,所以所作的角为钝角时,应取它的补角作为异面直线所成的角
(小白高考)新高考数学(零基础)一轮复习教案8.4《椭圆》 (2份打包,原卷版+教师版): 这是一份(小白高考)新高考数学(零基础)一轮复习教案8.4《椭圆》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案84《椭圆》教师版doc、小白高考新高考数学零基础一轮复习教案84《椭圆》原卷版doc等2份教案配套教学资源,其中教案共21页, 欢迎下载使用。
(小白高考)新高考数学(零基础)一轮复习教案8.2《两条直线的位置关系》 (2份打包,原卷版+教师版): 这是一份(小白高考)新高考数学(零基础)一轮复习教案8.2《两条直线的位置关系》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案82《两条直线的位置关系》教师版doc、小白高考新高考数学零基础一轮复习教案82《两条直线的位置关系》原卷版doc等2份教案配套教学资源,其中教案共13页, 欢迎下载使用。
(小白高考)新高考数学(零基础)一轮复习教案8.1《直线的倾斜角与斜率、直线的方程》 (2份打包,原卷版+教师版): 这是一份(小白高考)新高考数学(零基础)一轮复习教案8.1《直线的倾斜角与斜率、直线的方程》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案81《直线的倾斜角与斜率直线的方程》教师版doc、小白高考新高考数学零基础一轮复习教案81《直线的倾斜角与斜率直线的方程》原卷版doc等2份教案配套教学资源,其中教案共19页, 欢迎下载使用。