年终活动
搜索
    上传资料 赚现金

    专题25 多边形及内角和 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题25 多边形及内角和(原卷版).docx
    • 解析
      专题25 多边形及内角和(解析版).docx
    专题25 多边形及内角和(原卷版)第1页
    专题25 多边形及内角和(原卷版)第2页
    专题25 多边形及内角和(原卷版)第3页
    专题25 多边形及内角和(解析版)第1页
    专题25 多边形及内角和(解析版)第2页
    专题25 多边形及内角和(解析版)第3页
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题25 多边形及内角和 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用)

    展开

    这是一份专题25 多边形及内角和 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用),文件包含专题25多边形及内角和原卷版docx、专题25多边形及内角和解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
    技巧1:三角形内角和与外角的几种常见应用类型
    技巧2:巧用位似解三角形中的内接多边形问题
    【题型】一、多边形的内角和
    【题型】二、计算多边形的周长
    【题型】三、计算多边形对角线条数
    【题型】四、计算网格中的多边形面积
    【题型】五、正多边形内角和问题
    【题型】六、截角后的内角和问题
    【题型】七、正多边形的外角问题
    【题型】八、多边形外角和的实际应用
    【题型】九、平面镶嵌
    【考纲要求】
    1.了解多边形的有关概念,并能解决简单的多边形问题.
    2.掌握多边形的内角和定理,并会进行有关的计算与证明.
    【考点总结】一、多边形的相关知识
    【技巧归纳】
    技巧1:三角形内角和与外角的几种常见应用类型
    【类型】一、直接计算角度
    1.如图,在△ABC中,∠A=60°,∠B=40°,点D,E分别在BC,AC的延长线上,则∠1=________.
    2.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B=________.
    【类型】二、三角尺或直尺中求角度
    3.把一个直尺与一块三角尺按如图所示的方式放置,若∠1=40°,则∠2的度数为( )
    A.125° B.120° C.140° D.130°
    4.一副三角尺ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为________.

    5.一副三角尺如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.
    【类型】三、与平行线的性质综合求角度
    6.如图,AB∥CD,∠ABE=60°,∠D=50°,求∠E的度数.
    【类型】四、与截角和折叠综合求角度
    7.如图,在△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2等于( )
    A.360° B.250° C.180° D.140°
    8.△ABC是一个三角形的纸片,点D,E分别是△ABC边AB,AC上的两点.
    (1)如图①,如果沿直线DE折叠,则∠BDA′与∠A的关系是____________;
    (2)如果折成图②的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由;
    (3)如果折成图③的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由.
    技巧2:巧用位似解三角形中的内接多边形问题
    【类型】一、三角形的内接正三角形问题
    1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.
    画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.
    求证:△C′D′E′是等边三角形.
    【类型】二、三角形的内接矩形问题
    2.如图,求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DEEF=12.
    【类型】三、三角形的内接正方形问题(方程思想)
    3.如图,△ABC是一块锐角三角形余料,边BC=120 mm,高AD=80 mm,要把它加工成正方形零件,使正方形的一边QM在BC上,其余两个顶点P,N分别在AB,AC上,则这个正方形零件的边长是多少?
    4.(1)如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:eq \f(DP,BQ)=eq \f(PE,QC).
    (2)在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF,分别交DE于M,N两点.
    ①如图②,若AB=AC=1,直接写出MN的长;
    ②如图③,求证:MN2=DM·EN.
    【题型讲解】
    【题型】一、多边形的内角和
    例1、如图,AB=AC=AD,若∠BAD=80°,则∠BCD=( )
    A. 80° B. 100° C. 140° D. 160°
    【题型】二、计算多边形的周长
    例2、如图,□ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )
    A.12B.15C.16D.18
    【题型】三、计算多边形对角线条数
    例3、已知一个正n边形的每个内角为120°,则这个多边形的对角线有( )
    A.5条B.6条C.8条D.9条
    【题型】四、计算网格中的多边形面积
    例4、如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是( )
    A.B.C.D.
    【题型】五、正多边形内角和问题
    例5、游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是( ).
    A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短
    C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长
    【题型】六、截角后的内角和问题
    例6、一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( )
    A.360°B.540°
    C.180°或360°D.540°或360°或180°
    【题型】七、正多边形的外角问题
    例7、如图,小明从点A出发沿直线前进10米到达点B,向左转后又沿直线前进10米到达点C,再向左转后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为( )
    A.100米B.80米C.60米D.40米
    【题型】八、多边形外角和的实际应用
    例8、如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为( )
    A.80米B.96米C.64米D.48米
    【题型】九、平面镶嵌
    例9、下列边长相等的正多边形能完成镶嵌的是( )
    A.2个正八边形和1个正三角形B.3个正方形和2个正三角形
    C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形
    多边形及内角和(达标训练)
    一、单选题
    1.下列命题中,是真命题的是( )
    A.三角形内角和为360°B.对角线相等的菱形是正方形
    C.一次函数的图象一定经过原点D.全等的两个三角形一定关于某条直线轴对称
    2.如图,以正五边形ABCDE的边DE为边向外作等边三角形△DEF,连接AF,则∠AFE等于( )
    A.6°B.8°C.12°D.14°
    3.下列多边形中,内角和最大的是( )
    A.B.C.D.
    4.下列图形中,内角和与外角和相等的多边形是( )
    A.B.C.D.
    5.如图,若干个全等的正五边形排成圆环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
    A.10B.9C.8D.7
    二、填空题
    6.如图,正六边形ABCDEF与平行四边形GHMN的位置如图所示,若,则的度数是______°.
    7.如果一个n边形的内角和等于它的外角和的3倍,则n=___________.
    三、解答题
    8.如图,AB∥CD,平分,CE∥AD,.
    (1)求的度数:
    (2)若,求的度数.
    多边形及内角和(提升测评)
    一、单选题
    1.如图,,平分交于点,,,,分别是,延长线上的点,和的平分线交于点.下列结论:
    ①;
    ②;
    ③平分;
    ④.
    其中正确的有( )
    A.个B.个C.个D.个
    2.已知n边形的一个外角的度数为a.与该外角不相邻的所有内角的度数和为b.则a与b的关系是( )
    A.a=180°﹣bB.a=b﹣(n﹣1)•180°
    C.a=b﹣(n﹣2)•180°D.a=b﹣(n﹣3)•180°
    3.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )
    A.240°B.360°C.540°D.720°
    4.如图,正五边形中,F为边中点,连接,则的度数是( )
    A.B.C.D.
    5.如图,在四边形中,,,将沿翻折,得到.若,,则的度数为( )
    A.B.C.D.
    二、填空题
    6.如图,ABCD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.
    7.如图,在五边形ABCDE中,∠A+∠B+∠E=320°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是_____.
    三、解答题
    8.已知一个角的两边与另一个角的两边分别垂直,如图所示,解答下列问题:
    (1)如图1,,,与的数量关系是
    (2)如图2,,,与的数量关系是
    (3)由(1)(2)得出的结论是
    (4)若两个角的两边互相垂直,且一个角比另一个角的2倍少30°,则这两个角的度数分别是多少?
    多边形的相关知识
    多边形的相关知识
    1、在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角叫做外角。
    2、连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
    3、一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为
    凸多边形
    画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
    正多边形
    各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)
    多边形的内角和
    1、n边形的内角和定理:n边形的内角和为(n−2)∙180°
    2、n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

    相关试卷

    专题33 概率 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用):

    这是一份专题33 概率 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用),文件包含专题33概率原卷版docx、专题33概率解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    专题27 轴对称 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用):

    这是一份专题27 轴对称 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用),文件包含专题27轴对称原卷版docx、专题27轴对称解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    专题26 旋转 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用):

    这是一份专题26 旋转 备战2024年中考数学一轮复习考点题型全归纳与分层精练(全国通用),文件包含专题26旋转原卷版docx、专题26旋转解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map