还剩31页未读,
继续阅读
所属成套资源:中考数学二轮复习专项试题含解析答案
成套系列资料,整套一键下载
中考数学二轮复习专题36将军饮马问题含解析答案
展开这是一份中考数学二轮复习专题36将军饮马问题含解析答案,共34页。
1.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A.140°B.100°C.50°D.40°
2.如图,在Rt△ABC中,,,,AD平分,点F是AC的中点,点E是AD上的动点,则的最小值为( )
A.3B.4C.D.
3.如图,在锐角三角形ABC中,BC=4,∠ABC=60°, BD平分∠ABC,交AC于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是( )
A.B.2C.D.4
4.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A.B.C.9D.
5.如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为 .
6.如图,在矩形中, , ,为的中点,若为边上的两个动点,且,若想使得四边形的周长最小,则的长度应为 .
7.如图,已知直线,、之间的距离为8,点P到直线的距离为6,点Q到直线的距离为4,PQ=,在直线l1上有一动点A,直线上有一动点B,满足AB⊥,且PA+AB+BQ最小,此时PA+BQ= .
8.如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE的最小值 .
9.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为 .
10.如图,点C的坐标为(3,y),当的周长最短时,求y的值.
11.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.
12.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.
(1)求抛物线的解析式和对称轴;
(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)
13.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
(1)猜想DG与CF的数量关系,并证明你的结论;
(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
14.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
15.在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2,当四边形BDEF的周长最小时,求点E的坐标
16.村庄A和村庄B位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A与B之间的距离最短?
17.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?
18.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,A(3,0),B(0,4),D为边OB的中点.
(1)若E为边OA上的一个动点,求的周长最小值;
(2)若E、F为边OA上的两个动点,且EF=1,当四边形CDEF的周长最小时,求点E、F的坐标.
19.如图所示抛物线过点,点,且
(1)求抛物线的解析式及其对称轴;
(2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;
(3)点为抛物线上一点,连接,直线把四边形的面积分为3∶5两部分,求点的坐标.
20.如图,在平面直角坐标系中,矩形的边交轴于点,轴,反比例函数的图象经过点,点的坐标为,.
(1)求反比例函数的解析式;
(2)点为轴上一动点,当的值最小时,求出点的坐标.
21.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
评卷人
得分
一、单选题
评卷人
得分
二、填空题
评卷人
得分
三、解答题
参考答案:
1.B
【分析】根据轴对称的性质证得△OCD是等腰三角形,求得得∠OCD=∠ODC=50°,再利用SAS证明△CON≌△PON,△ODM≌△OPM,根据全等三角形的性质可得∠OCN=∠NPO=50°,∠OPM=∠ODM=50°,再由∠MPN=∠NPO+∠OPM即可求解.
【详解】解∶如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.
∴OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;
∵∠AOB=∠MOP+∠PON=40°,
∴∠COD=2∠AOB=80°,
在△COD中,OC=OD,∠AOB=40°,
∴∠OCD=∠ODC=50°;
在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,
∴△CON≌△PON,
∴∠OCN=∠NPO=50°,
同理∠OPM=∠ODM=50°,
∴∠MPN=∠NPO+∠OPM=50°+50°=100°.
故选:B.
【点睛】本题考查了轴对称的性质、等腰三角形的性质、三角形的内角和定理、全等三角形的判定与性质等知识点.
2.C
【分析】作于,并延长交于,连接交于,证明△AGC≌△AGH,得到AC=AH,此时,的值最小,的最小值,解直角三角形即可得到结论.
【详解】解:作于,并延长交于,连接交于,
平分,
∴∠CAD=∠BAD,
又∠AGC=∠AGH=90°,AG=AG,
∴△AGC≌△AGH(ASA),
∴AC=AH,
此时C、H关于AD对称,的值最小,的最小值,
在中,,.,
,
,
,
∴AB=2AC,
∵AC=AH,
,
点是的中点,
,
,
,
故选:.
【点睛】本题主要考查的是最短路径,全等三角形的判定和性质,勾股定理的应用等知识,解题的关键是利用对称,解决最短问题.
3.C
【分析】在BA上截取BE=BN,构造全等三角形△BME≌△BMN,利用三角形的三边的关系确定线段和的最小值.
【详解】解:如图,在BA上截取BE=BN,
因为∠ABC的平分线交AC于点D,
所以∠EBM=∠NBM,
在△BME与△BMN中,
所以△BME≌△BMN(SAS),
所以ME=MN.
所以CM+MN=CM+ME≥CE.
因为CM+MN有最小值.
当CE是点C到直线AB的距离时,即C到直线AB的垂线段时,CE取最小值
此时,∵∠ABC=60°,CE⊥AB,
∴∠BCE=30°,
∴BE=,
∴CE=,
故选C.
【点睛】本题考查了轴对称的应用,最短路径问题,垂线段最短等知识.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把CM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.
4.A
【分析】根据点B与D关于AC对称,连接BE,设BE与AC交于点P′,即P在AC与BE的交点上时,PD+PE最小,为BE的长度.再利用勾股定理即可得出结果.
【详解】如图,连接BE,设BE与AC交于点P′,
∵四边形ABCD是正方形,
∴点B与D关于AC对称,
∴P′D=P′B,
∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.
∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,
∴BE==.
故选A.
【点睛】本题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题,找出P点位置是解题的关键.
5.8
【分析】设点P关于OB的对称点为,关于OA的对称点为,当点M、N在上时,△PMN的周长最小.
【详解】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点 、 ,化PM+PN+MN为N+MN+M.
当、N、M、共线时,得△PMN周长的最小值,即线段 长,连接O、O,可得△O为等边三角形,所以=O=OP=8.
故答案为:8.
【点睛】此题主要考查轴对称——最短路线问题,熟知两点之间线段最短是解答此题的关键.
6.
【分析】要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,证即可.
【详解】
解:如图,在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.
∵E为CD的中点,∴CE=2
∴GH=DF=5,EH=2+4=6,∠H=90°,
∵BC//GH
∴,
∴,
∴,
∴CQ=,
∴BP=CB-PQ-CQ=7-2-.
故答案为.
【点睛】本题考查了矩形的性质,勾股定理,轴对称-最短路线问题的应用,题目具有一定的代表性,但是一道难度偏大的题目,对学生提出较高的要求.
7.16
【分析】作PE⊥于E交于F,在PF上截取PC=8,连接QC交于B,作BA⊥于A,此时PA+AB+BQ最短.作QD⊥PF于D.在Rt△PQD中,由勾股定理可求得DQ的长;易证四边形ABCP是平行四边形,由平行四边形的性质及勾股定理可求得结果.
【详解】作PE⊥于E交于F,在PF上截取PC=8,连接QC交于B,作BA⊥于A,此时PA+AB+BQ最短.作QD⊥PF于D.
在Rt△PQD中,∵∠D=,PQ=,PD=18,
∴DQ= =,
∵AB=PC=8,ABPC,
∴四边形ABCP是平行四边形,
∴PA=BC,
又CD=10,
∴PA+BQ=CB+BQ=QC= ==16.
故答案为:16.
【点睛】本题考查了轴对称﹣最短路线问题,平行线的性质,平行四边形的判定与性质,勾股定理等知识.
8.10
【分析】根据正方形对角线的性质:AC上的点到点B、D的距离相等,连接DE交AC于点P即可.
【详解】解:如图:
连接DE交AC于点P,此时PD=PB,
PB+PE=PD+PE=DE为其最小值,
∵四边形ABCD为正方形,且BE=2,AB=8,
∴∠DAB=90°,AD=AB=8,AE=AB-BE=6,
在Rt△ADE中,根据勾股定理,得
DE=
=
=10.
∴PB+PE的最小值为10.
故答案为10.
【点睛】本题考查了正方形的性质,涉及了线段和的最小值问题,依据两点之间线段最短确定动点P的位置是解题的关键.
9.(,).
【详解】解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为(,).
点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.
10.
【分析】作A关于的对称点,连接交直线与点C,先求得的解析式,然后将代入直线的解析式,从而可求得y的值.
【详解】解:作A关于的对称点,连接交直线与点C.
∵点A与点关于对称,
∴,
∴,
当点B、C、在同一条直线上时,有最小值,即的周长有最小值,
∵点A与点关于对称,
∴点的坐标为(6,3).
设直线的解析式,将点B和点的坐标代入,
得
解得:,
∴,
将代入函数的解析式,
∴y的值为.
【点睛】本题主要考查的是轴对称路径最短、一次函数,明确当点B、C、在同一条直线上时,有最小值是解题的关键.
11.0,3
【分析】当N点是DM的垂直平分线与AC的交点时|DN-MN|最小,再利用三角形三边的关系得到|DN-MN|≤DM,当点N运动到C点时取等号,从而得到|DN-MN|的最大值.
【详解】解:当ND=NM时,即N点在DM的垂直平分线与AC的交点,|DN-MN|=0,
因为|DN-MN|≤DM,当点N运动到C点时取等号,此时|DN-MN|=DM=3,
所以|DN-MN|的最小值为0,最大值为3.
【点睛】本题考查了正方形的性质,线段垂直平分线的性质,三角形三边的关系,确定出|DN-MN|的最小值与最大值时点N的位置是解答本题的关键.
12.(1),函数的对称轴为:;(2)点;(3)存在,点的坐标为或.
【分析】根据点的坐标可设二次函数表达式为:,由C点坐标即可求解;
连接交对称轴于点,此时的值为最小,即可求解;
,则,将该坐标代入二次函数表达式即可求解.
【详解】解:根据点,的坐标设二次函数表达式为:,
∵抛物线经过点,
则,解得:,
抛物线的表达式为: ,
函数的对称轴为:;
连接交对称轴于点,此时的值为最小,
设BC的解析式为:,
将点的坐标代入一次函数表达式:得:
解得:
直线的表达式为:,
当时,,
故点;
存在,理由:
四边形是以为对角线且面积为的平行四边形,
则 ,
点在第四象限,故:则,
将该坐标代入二次函数表达式得:
,
解得:或,
故点的坐标为或.
【点睛】本题考查二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中,求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法.
13.(1)结论:CF=2DG,理由见解析;(2)△PCD的周长的最小值为10+2.
【分析】(1)结论:CF=2DG.只要证明△DEG∽△CDF即可;
(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
【详解】(1)结论:CF=2DG.
理由:∵四边形ABCD是正方形,
∴AD=BC=CD=AB,∠ADC=∠C=90°,
∵DE=AE,
∴AD=CD=2DE,
∵EG⊥DF,
∴∠DHG=90°,
∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,
∴∠CDF=∠DEG,
∴△DEG∽△CDF,
∴==,
∴CF=2DG.
(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,
此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,
∴EH=2DH=2,
∴HM==2,
∴DM=CN=NK==1,
在Rt△DCK中,DK===2,
∴△PCD的周长的最小值为10+2.
【点睛】本题考查正方形的性质、轴对称最短问题、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由轴对称解决最短问题,属于中考常考题型.
14.(1)抛物线解析式为y=﹣x2+x+4;D点坐标为(3,5);(2)M点的坐标为(0,)或(0,);(3)AM+AN的最小值为.
【详解】【分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;
(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=∠OCB,根据相似三角形的判定方法,当时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即;当时,△CMN∽△CBO,于是有∠CNM=∠COB=90°,即,然后分别求出m的值即可得到M点的坐标;
(3)连接DN,AD,如图,先证明△ACM≌△DBN,则AM=DN,所以AM+AN=DN+AN,利用三角形三边的关系得到DN+AN≥AD(当且仅当点A、N、D共线时取等号),然后计算出AD即可.
【详解】(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,
∴抛物线解析式为y=﹣x2+x+4;
∵AC=BC,CO⊥AB,
∴OB=OA=3,
∴B(3,0),
∵BD⊥x轴交抛物线于点D,
∴D点的横坐标为3,
当x=3时,y=﹣×9+×3+4=5,
∴D点坐标为(3,5);
(2)在Rt△OBC中,BC==5,
设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,
∴当时,△CMN∽△COB,则∠CMN=∠COB=90°,
即,解得m=,此时M点坐标为(0,);
当时,△CMN∽△CBO,则∠CNM=∠COB=90°,
即,解得m=,此时M点坐标为(0,);
综上所述,M点的坐标为(0,)或(0,);
(3)连接DN,AD,如图,
∵AC=BC,CO⊥AB,
∴OC平分∠ACB,
∴∠ACO=∠BCO,
∵BD∥OC,
∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,
∴△ACM≌△DBN,
∴AM=DN,
∴AM+AN=DN+AN,
而DN+AN≥AD(当且仅当点A、N、D共线时取等号),
∴DN+AN的最小值=,
∴AM+AN的最小值为.
【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质等,解题的关键是会利用待定系数法求函数解析式、理解坐标与图形性质、会运用分类讨论的思想解决数学问题.
15.
【分析】首先将点D向右平移2个单位得到,作关于x轴的对称点,连接交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小;再利用待定系数法求一次函数的解析式,据此即可求得.
【详解】解:如图,将点D向右平移2个单位得到,作关于x轴的对称点,连接交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小.
理由:
,,
四边形是平行四边形,
,
∵四边形BDEF的周长为BD+DE+EF+BF,BD与EF是定值,
∴BF+DE最小时,四边形BDEF周长最小,
∵,
设直线的解析式为y=kx+b,把,代入,
得,
解得,
∴直线的解析式为,
令y=0,得,
∴点F坐标为,
∴点E坐标为,即.
【点睛】本题考查了利用轴对称求最短距离,平行四边形的判定与性质,待定系数法求一次函数的解析式,熟练掌握和运用利用轴对称求最短距离的方法是解决本题的关键.
16.见解析
【分析】设和为河岸,作,取等于河宽,连接交于C1,作于,则A→→→B为最短路线,即A与B之间的距离最短.
【详解】解:如下图所示,
作,取等于河宽,
连接交于C1,作于,
连接,
∵,,
∴四边形是平行四边形,
∴,
∵A与B之间的距离等于,,
其中等于河宽,
∴当、、在同一条直线上时,最小,
∴A→→→B为最短路线,即A与B之间的距离最短,
故即为桥所在的位置.
【点睛】本题考查最短路径和平行四边形的性质,解题的关键是熟练掌握最小路径的识别方法.
17.∠ECF=30º
【分析】过E作EMBC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.
【详解】过E作,交AD于N,
∵AC=4,AE=2,
∴EC=2=AE,
∴AM=BM=2,
∴AM=AE,
∵AD是BC边上的中线,△ABC是等边三角形,
∴AD⊥BC,
∵EMBC,
∴AD⊥EM,
∵AM=AE,
∴E和M关于AD对称,
连接CM交AD于F,连接EF,
则此时EF+CF的值最小,
∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC,
∵AM=BM,
∴∠ECF=∠ACB=30°,
【点睛】本题考查了轴对称-最短路线问题,等边三角形的性质,等腰三角形的性质,平行线分线段成比例定理等知识点的应用.
18.(1)
(2),
【分析】(1)作点D关于x轴的对称点,连接与x轴交于点E,连接DE,先求出直线的关系式,得出点E的坐标,求出AE=2,根据勾股定理求出,,,即可得出答案;
(2)将点D向右平移1个单位得到,作关于x轴的对称点,连接交x轴于点F,将点F向左平移1个单位到点E,此时点E和点F为所求作的点,用待定系数法求出的关系式,然后求出与x轴的交点坐标,即可得出答案.
【详解】(1)解:如图,作点D关于x轴的对称点,连接与x轴交于点E,连接DE,由模型可知的周长最小,
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴D(0,2),C(3,4),,
设直线为y=kx+b,把C(3,4),代入,
得,,解得k=2,,
∴直线为,
令y=0,得x=1,
∴点E的坐标为(1,0).
∴OE=1,AE=2,
利用勾股定理得,
,
,
∴△CDE周长的最小值为:.
(2)解:如图,将点D向右平移1个单位得到,作关于x轴的对称点,连接交x轴于点F,将点F向左平移1个单位到点E,此时点E和点F为所求作的点,连接,此时四边形CDEF周长最小,
理由如下:
∵四边形CDEF的周长为CD+DE+EF+CF,CD与EF是定值,
∴DE+CF最小时,四边形CDEF周长最小,
∵,且,
∴四边形为平行四边形,
∴,
根据轴对称可知,,
∴,
设直线的解析式为y=kx+b,把C(3,4),代入,
得,解得,
∴直线的解析式为,
令y=0,得,
∴点F坐标为,
∴点E坐标为.
【点睛】本题主要考查了轴对称的性质,将军饮马问题,根据题意作出辅助线,找出最短时动点的位置,是解题的关键.
19.(1),对称轴为直线;(2)四边形的周长最小值为;(3)
【分析】(1)OB=OC,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,即可求解;
(2)CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;
(3)S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,即可求解.
【详解】(1)∵OB=OC,∴点B(3,0),
则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,
故-3a=3,解得:a=-1,
故抛物线的表达式为:y=-x2+2x+3…①;
对称轴为:直线
(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,
故CD+AE最小时,周长最小,
取点C关于函数对称点C(2,3),则CD=C′D,
取点A′(-1,1),则A′D=AE,
故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
四边形ACDE的周长的最小值=AC+DE+CD+AE=+1+A′D+DC′=+1+A′C′=+1+;
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为3:5两部分,
又∵S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,
则BE:AE,=3:5或5:3,
则AE=或,
即:点E的坐标为(,0)或(,0),
将点E、C的坐标代入一次函数表达式:y=kx+3,
解得:k=-6或-2,
故直线CP的表达式为:y=-2x+3或y=-6x+3…②
联立①②并解得:x=4或8(不合题意值已舍去),
故点P的坐标为(4,-5)或(8,-45).
【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.
20.(1);(2)
【分析】(1)根据矩形的性质及等腰直角三角形得到OD=AD,即可求出A点坐标,故可求出反比例函数解析式;(2)过点作垂足为,先求出点坐标,
再求出点关于轴的对称点,直线与轴的交点就是所求点,此时最小,根据待定系数法确定直线AB1的关系式,再求出与y轴的交点即为所求.
【详解】解:(1)∵是矩形,
∴,
∵,
∴,
∴,
又∵轴,
∴,
∴,
∵
∴,即
把点 代入的得,
∴反比例函数的解析式为:.
答:反比例函数的解析式为:.
(2)过点作垂足为,
∵,,
∴,
∴,
∴,
则点关于轴的对称点,直线与轴的交点就是所求点,此时最小,
设直线AB1的关系式为,将 ,,代入得,
解得:,,
∴直线的关系式为,
当时,,
∴点
答:点的坐标为.
【点睛】此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式与对称性.
21.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);
(3)符合条件的点P的坐标为(,)或(,﹣),
【分析】(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;
(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;
(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=- x+b,把C点坐标代入求出b得到直线PC的解析式为y=- x+3,再解方程组 得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.
【详解】(1)设抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
当x=0时,y=﹣x2+2x+3=3,则C(0,3),
设直线AC的解析式为y=px+q,
把A(﹣1,0),C(0,3)代入得,解得,
∴直线AC的解析式为y=3x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4),
作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),
∵MB=MB′,
∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,
而BD的值不变,
∴此时△BDM的周长最小,
易得直线DB′的解析式为y=x+3,
当x=0时,y=x+3=3,
∴点M的坐标为(0,3);
(3)存在.
过点C作AC的垂线交抛物线于另一点P,如图2,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=﹣x+b,
把C(0,3)代入得b=3,
∴直线PC的解析式为y=﹣x+3,
解方程组,解得或,则此时P点坐标为(,);
过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,
把A(﹣1,0)代入得+b=0,解得b=﹣,
∴直线PC的解析式为y=﹣x﹣,
解方程组,解得或,则此时P点坐标为(,﹣).
综上所述,符合条件的点P的坐标为(,)或(,﹣).
【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.
相关试卷
中考数学一轮复习考点复习专题36 几何最值之将军饮马问题【热点专题】(含解析):
这是一份中考数学一轮复习考点复习专题36 几何最值之将军饮马问题【热点专题】(含解析),共27页。
中考数学二轮复习考点精讲专题36 几何最值之将军饮马问题(教师版):
这是一份中考数学二轮复习考点精讲专题36 几何最值之将军饮马问题(教师版),共27页。
中考培优竞赛专题经典讲义 第9讲 最值问题之将军饮马问题:
这是一份中考培优竞赛专题经典讲义 第9讲 最值问题之将军饮马问题,共19页。