所属成套资源:中考数学二轮复习专项试题含解析答案
中考数学二轮复习专题07平面直角坐标系与函数概念B含解析答案
展开
这是一份中考数学二轮复习专题07平面直角坐标系与函数概念B含解析答案,共14页。
1.如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为( )
A.B.C.D.
2.若点关于轴的对称点在第四象限,则的取值范围在数轴上表示为( )
A.B.
C.D.
3.如图是某市一天的气温随时间变化的情况,下列说法正确的是( )
A.这一天最低温度是-4℃B.这一天12时温度最高C.最高温比最低温高8℃D.0时至8时气温呈下降趋势
4.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中甲、乙两人之间的距离(米)与乙出发的时间x(秒)之间的函数关系如图所示,正确的个数为( )
①乙的速度为5米/秒;
②离开起点后,甲、乙两人第一次相遇时,距离起点12米;
③甲、乙两人之间的距离超过32米的时间范围是;
④乙到达终点时,甲距离终点还有68米.
A.4B.3C.2D.1
5.已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地( )
A.15kmB.16kmC.44kmD.45km
6.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图像,据此可计算32mg镭缩减为1mg所用的时间大约是( )
A.4860年B.6480年C.8100年D.9720年
7.如图,在平面直角坐标系中,的边的中点C,D的横坐标分别是1,4,则点B的横坐标是 .
8.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”,两点的坐标分别为,,则叶杆“底部”点的坐标为 .
9.如图,在平面直角坐标系中,菱形对角线的交点坐标是,点的坐标是,且,则点的坐标是 .
10.在函数中,自变量的取值范围是 .
11.在函数中,自变量x的取值范围 .
12.如图,A,B两点的坐标分别为,在x轴上找一点P,使线段的值最小,则点P的坐标是 .
13.在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为 .
14.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:
(1)快车的速度为 km/h,C点的坐标为 .
(2)慢车出发多少小时候,两车相距200km.
评卷人
得分
一、单选题
评卷人
得分
二、填空题
评卷人
得分
三、解答题
参考答案:
1.D
【分析】先根据题意得出OA=8,OC=2,再根据勾股定理计算即可
【详解】解:由题意可知:AC=AB
∵,
∴OA=8,OC=2
∴AC=AB=10
在Rt△OAB中,
∴B(0,6)
故选:D
【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键
2.C
【分析】先根据题意求出点关于轴的对称点坐标,根据点在第四象限列方程组,求解即可.
【详解】∵
∴点 关于轴的对称点坐标为
∵在第四象限
∴
解得:
故选:C
【点睛】本题考查点关于坐标轴对称点求法,以及根据象限点去判断参数的取值范围,能根据题意找见相关的关系是解题关键.
3.A
【分析】根据气温变化图逐项进行判断即可求解.
【详解】解:A. 这一天最低温度是,原选项判断正确,符合题意;
B. 这一天14时温度最高,原选项判断错误,不合题意;
C. 这一天最高气温8℃,最低气温-4℃,最高温比最低温高,原选项判断错误,不合题意;
D. 时至时气温呈先下降在上升趋势,原选项判断错误,不合题意.
故选:A
【点睛】本题考查了根据函数图象读取信息,理解气温随时间变化而变化并从中读取信息是解题关键.
4.B
【分析】利用乙用80秒跑完400米求速度可判断①;利用甲先走3秒和12米求出甲速度,根据乙追甲相差12米求时间=12秒再求距起点的距离可判断②;利用两人间距离列不等式5(t-12)-4(t-12)32,和乙到终点,甲距终点列不等式4 t+12400-32解不等式可判断③;
根据乙到达终点时间,求甲距终点距离可判断④即可
【详解】解:①∵乙用80秒跑完400米
∴乙的速度为=5米/秒;
故①正确;
②∵乙出发时,甲先走12米,用3秒钟,
∴甲的速度为米/秒,
∴乙追上甲所用时间为t秒,
5t-4t=12,
∴t=12秒,
∴12×5=60米,
∴离开起点后,甲、乙两人第一次相遇时,距离起点60米;
故②不正确;
③甲乙两人之间的距离超过32米设时间为t秒,
∴5(t-12)-4(t-12)32,
∴t44,
当乙到达终点停止运动后,
4 t+12400-32,
∴t89,
甲、乙两人之间的距离超过32米的时间范围是;
故③正确;
④乙到达终点时,
甲距终点距离为:400-12-4×80=400-332=68米,
甲距离终点还有68米.
故④正确;
正确的个数为3个.
故选择B.
【点睛】本题考查一次函数的图像应用问题,仔细阅读题目,认真观察图像,从图像中获取信息,掌握一次函数的图像应用,列不等式与解不等式,关键是抓住图像纵轴是表示两人之间的距离,横坐标表示乙出发时间,拐点的意义是解题关键.
5.A
【分析】根据图象信息和已知条件,用待定系数法求出,,(),再根据追上时路程相等,求出答案.
【详解】解:设,将(3,60)代入表达式,得:
,解得:,
则,
当y=30km时,求得x=,
设,将(1,0),,代入表达式,得:
,得:,
∴,
∴,,
∵乙在途中休息了半小时,到达B地时用半小时,
∴当时,设,将(2,30),代入表达式,得到:
,得:,
∴(),
则当时,,
解得:,
∴,
∴当乙再次追上甲时距离A地45km
所以乙再次追上甲时距离地
故选:A.
【点睛】本题主要考查了利用一次函数图像解决实际问题,关键在于理解题意,明白追击问题中追上就是路程相等,再利用待定系数法求出函数表达式,最后进行求解.
6.C
【分析】根据物质所剩的质量与时间的规律,可得答案.
【详解】解:由图可知:
1620年时,镭质量缩减为原来的,
再经过1620年,即当3240年时,镭质量缩减为原来的,
再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的,
...,
∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的,
此时mg,
故选C.
【点睛】本题考查了函数图像,规律型问题,利用函数图像的意义是解题关键.
7.6
【分析】根据中点的性质,先求出点A的横坐标,再根据A、D求出B点横坐标.
【详解】设点A的横坐标为a,点B的横坐标是b;
点的横坐标是0,C的横坐标是1 ,C,D是的中点
得
得
点B的横坐标是6.
故答案为6.
【点睛】本题考查了中点的性质,平面直角坐标系,三角形中线的性质,正确的使用中点坐标公式并正确的计算是解题的关键.
8.
【分析】根据A,两点的坐标分别为,,可以判断原点的位置,然后确定C点坐标即可.
【详解】解:∵,两点的坐标分别为,,
∴B点向右移动3位即为原点的位置,
∴点C的坐标为,
故答案为:.
【点睛】本题主要考查在平面直角系中,根据已知点的坐标,求未知点的坐标,解题的关键是根据已知点的坐标确定原点的坐标.
9.(2,0)
【分析】根据菱形的性质,可得OA=OC,结合勾股定理可得OA=OC=2,进而即可求解.
【详解】解:∵菱形对角线的交点坐标是,点的坐标是,
∴OB=1,OA=OC,
∵,
∴OC=,
∴OA=2,即:A的坐标为:(2,0),
故答案是:(2,0).
【点睛】本题主要考查菱形的性质,勾股定理以及点的坐标,熟练掌握菱形的性质,是解题的关键.
10.
【分析】根据分式有意义的条件及函数的概念可直接进行求解.
【详解】解:由题意得:
,解得:,
∴在函数中,自变量的取值范围是;
故答案为.
【点睛】本题主要考查分式有意义的条件及函数,熟练掌握分式有意义的条件及函数是解题的关键.
11.
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】根据题意得:
,解得
∴自变量x的取值范围是.
故答案为:.
【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
12.
【分析】连接点A,B交轴于点P,则 PA+PB的值最小,此时点P即为所求.
【详解】解:连接点A,B,
设直线AB的解析式为
点,点
解得
直线AB的解析式为
当时,则
解得
故答案为:
【点睛】本题考查了两线段之和的最值问题,待定系数法求一次函数解析式,一次函数与坐标轴的交点等知识,熟练掌握解题方法是解题关键.
13.或
【分析】根据题意,点B不可能在坐标轴上,可对点B进行讨论分析:①当点B在边DE上时;②当点B在边CD上时;分别求出点B的坐标,然后求出的面积即可.
【详解】解:根据题意,
∵点称为点的“倒数点”,
∴,,
∴点B不可能在坐标轴上;
∵点A在函数的图像上,
设点A为,则点B为,
∵点C为,
∴,
①当点B在边DE上时;
点A与点B都在边DE上,
∴点A与点B的纵坐标相同,
即,解得:,
经检验,是原分式方程的解;
∴点B为,
∴的面积为:;
②当点B在边CD上时;
点B与点C的横坐标相同,
∴,解得:,
经检验,是原分式方程的解;
∴点B为,
∴的面积为:;
故答案为:或.
【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.
14.(1)100,(8,480);(2)1.75h和4.875h.
【分析】(1)由图像可知,甲乙两地的距离为480km, 0-3小时快车和慢车一起行驶了3小时,3-4小时快车出现故障停止前行、仅有慢车行驶,进而求出慢车速度,然后再求出快车的速度;A、B段为快车已维修好,两车共同行驶且快车在B点到站,BC段仅为慢车行驶;则可求出B点坐标,进而求出C点的横坐标即可解答;
(2)分快车出现故障前和故障后两种情况解答即可.
【详解】解:(1)由图像可知,甲乙两地的距离为480km
在0-3小时快车和慢车一起行驶了3小时,3-4小时快车出现故障停止前行、仅有慢车行驶
则慢车速度为=60km/h
设快车速度为v,则有:(v+60)×3=480,解得v=100km/h
∴B点的横坐标为+1=5.8,从坐标为60+(60+100)×(5.8-4)=348,即B(5.8,348)
∴慢车行驶时间为h,
∴C点的横坐标为8
∴C点的坐标为(8,480);
(2)在快车出现故障前,两车相距200km 所用时间为:(480-200)÷(100+60)=1.75h;
在快车出现故障后,慢车1小时行驶了60km,然后两车共同行驶了200-60=140km
共同行驶时间为140÷(100+60)=0.875h
∴两车相距200km 所用时间为4+0.875=4.875h.
答:两车相距200km 所用时间为1.75h和4.875h.
【点睛】本题考查了从函数图象中获取信息和行程问题,从函数图象中获取有用的信息成为解答本题的关键.
相关试卷
这是一份中考数学二轮复习专题07平面直角坐标系与函数概念a含解析答案,共11页。试卷主要包含了已知点A,在平面直角坐标系中,将点A,已知A等内容,欢迎下载使用。
这是一份中考数学一轮复习考点复习专题07 平面直角坐标系与函数概念【考点精讲】(含解析),共12页。试卷主要包含了平面直角坐标系,点的坐标特征等内容,欢迎下载使用。
这是一份中考数学一轮复习考点巩固练习专题07 平面直角坐标系与函数概念(教师版),共14页。