所属成套资源:5年(2019-2023)中考1年模拟数学真题分类汇编(全国通用)
专题13 解三角形与三角形全等5年(2019-2023)中考1年模拟数学真题分类汇编(全国通用)
展开这是一份专题13 解三角形与三角形全等5年(2019-2023)中考1年模拟数学真题分类汇编(全国通用),文件包含专题13解三角形与三角形全等5年2019-2023中考1年模拟数学真题分项汇编全国通用解析版docx、专题13解三角形与三角形全等学生版-5年2019-2023中考1年模拟数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
考点1 解三角形与三角形全等
一、单选题
1.(2020·广西贺州·统考中考真题)如图,将两个完全相同的Rt△ACB和Rt△A'C′B′拼在一起,其中点A′与点B重合,点C'在边AB上,连接B′C,若∠ABC=∠A′B′C′=30°,AC=A′C′=2,则B′C的长为( )
A.2B.4C.2D.4
2.(2020·广西贵港·中考真题)如图,点,在菱形的对角线上,,,与的延长线交于点.则对于以下结论:①;②;③;④.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
3.(2020·广西贵港·中考真题)如图,动点在边长为2的正方形内,且,是边上的一个动点,是边的中点,则线段的最小值为( )
A.B.C.D.
4.(2023年安徽中考数学真题)如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则( )
A.B.C.D.
5.(2023年安徽中考数学真题)如图,是线段上一点,和是位于直线同侧的两个等边三角形,点分别是的中点.若,则下列结论错误的是( )
A.的最小值为B.的最小值为
C.周长的最小值为6D.四边形面积的最小值为
二、填空题
6.(2019·江苏南通·统考中考真题)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF= 度.
7.(2021·四川甘孜·统考中考真题)如图,腰长为22的等腰ABC中,顶角∠A=45°,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为 .
8.(2023年山东省枣庄市中考数学真题)如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆米,,支架米,可以绕着点O自由旋转,当点A旋转到如图所示位置时,此时点B到水平地面的距离为 米.(结果保留根号)
9.(2023年河南省中考数学真题)如图,与相切于点A,交于点B,点C在上,且.若,,则的长为 .
三、解答题
10.(2023年广西壮族自治区中考数学真题)如图,在中,,.
(1)在斜边上求作线段,使,连接;
(要求:尺规作图并保留作图痕迹,不写作法,标明字母)
(2)若,求的长.
11.(2022·贵州安顺·统考中考真题)如图,在中,,,是边上的一点,以为直角边作等腰,其中,连接.
(1)求证:;
(2)若时,求的长.
12.(2022·辽宁丹东·统考中考真题)如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile(nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19,sin53°≈0.80,cs53°≈0.60,tan53°≈1.33.)
13.(2023年河南省中考数学真题)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).
14.(2023年湖南省长沙市中考数学真题)如图,,,,垂足分别为,.
(1)求证:;
(2)若,,求的长.
15.(2023年广东省中考数学真题)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂,两臂夹角时,求A,B两点间的距离.(结果精确到,参考数据,,)
16.(2023年广西壮族自治区中考数学真题)如图,是边长为4的等边三角形,点D,E,F分别在边,,上运动,满足.
(1)求证:;
(2)设的长为x,的面积为y,求y关于x的函数解析式;
(3)结合(2)所得的函数,描述的面积随的增大如何变化.
17.(2019·江苏南通·统考中考真题)如图,有一池塘,要测池塘两端,的距离,可先在平地上取一个点,从点不经过池塘可以直接到达点和.连接并延长到点,使.连接并延长到点,使.连接,那么量出的长就是,的距离.为什么?
18.(2020·广西贵港·中考真题)如图,在中,,点在边上,且,是的外接圆,是的直径.
(1)求证:是的切线:
(2)若,,求直径的长.
19.(2022·山东菏泽·统考中考真题)菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:)
20.(2023年江西省中考数学真题)如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点,,,均在同一直线上,,测得.(结果保小数点后一位)
(1)连接,求证:;
(2)求雕塑的高(即点E到直线BC的距离).
(参考数据:)
21.(2023年河南省中考数学真题)如图,中,点D在边上,且.
(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).
(2)若(1)中所作的角平分线与边交于点E,连接.求证:.
22.(2023年湖南省长沙市中考数学真题)年月日点分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面处发射,当飞船到达点时,从位于地面处的雷达站测得的距离是,仰角为;后飞船到达处,此时测得仰角为.
(1)求点离地面的高度;
(2)求飞船从处到处的平均速度.(结果精确到,参考数据:)
23.(2019·江苏南通·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O经过点B.
(1)求⊙O的半径;
(2)点P为中点,作PQ⊥AC,垂足为Q,求OQ的长;
(3)在(2)的条件下,连接PC,求tan∠PCA的值.
24.(2021·四川甘孜·统考中考真题)如图1,正方形ABCD的对角线AC,BD相交于点O,E是边BC上一点,连接DE交AC于点F,连接BF.
(1)求证:△CBF≌△CDF;
(2)如图2,过点F作DE的垂线,交BC的延长线于点G,交OB于点N.
①求证:FB=FG;
②若tan∠BDE,ON=1,直接写出CG的长.
25.(2023年湖北省武汉市数学真题)问题提出:如图(1),是菱形边上一点,是等腰三角形,,交于点,探究与的数量关系.
问题探究:
(1)先将问题特殊化,如图(2),当时,直接写出的大小;
(2)再探究一般情形,如图(1),求与的数量关系.
问题拓展:
(3)将图(1)特殊化,如图(3),当时,若,求的值.
26.(2023年广东省中考数学真题)综合探究
如图1,在矩形中,对角线相交于点,点关于的对称点为,连接交于点,连接.
(1)求证:;
(2)以点为圆心,为半径作圆.
①如图2,与相切,求证:;
②如图3,与相切,,求的面积.
27.(2023·福建福州·校考二模)在数学综合实践课上,某学习小组计划制作一个款式如图所示的风筝.在骨架设计中,两条侧翼的长度设计,风筝顶角的度数为,在上取D,E两处,使得,并作一条骨架.在制作风筝面时,需覆盖整个骨架,根据以上数据,B,C两点间的距离大约是( )(参考数据:)
A.41B.57C.82D.143
28.(2023·山东泰安·校考三模)某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1∶2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)
A.米B.米C.56米D.66米
29.(2023·浙江金华·统考一模)安装了软件“”的智能手机可以测量物高.其数学原理是:该软件通过测量手机离地面的高度,物体底端的俯角和顶端的仰角即可得出物体高度.如图,小明测得大树底端点俯角,顶端点的仰角,点离地面的高度米,则大树的为( )
A.米B.米
C.米D.米
30.(2023·福建福州·校考二模)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于( )
A.B.C.3D.2
31.(2023·浙江金华·统考一模)“化积为方”是一个古老的几何学问题,即给定一个长方形,作一个和它面积相等的正方形,这也是证明勾股定理的一种思想方法.如图所示,在矩形中,以为边作正方形,在的延长线上取一点,使得,过点作交于点,过点作于点.若,则为( )
A.4B.C.D.
32.(2023·黑龙江绥化·统考模拟预测)在矩形ABCD中,AD = 2AB = 4,E为AD的中点,一块足够大的三角板的直角顶点与E重合,将三角板绕点E旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点M、N,设∠AEM = α(0°<α < 90°),给出四个结论:
①AM =CN ②∠AME =∠BNE ③BN-AM =2 ④ .
上述结论中正确的个数是
A.1B.2C.3D.4
33.(2023·河南信阳·校考三模)如图,在等边中,,点D在边上,点E是边上一动点,将∠B沿折叠,点B的对应点在AC边上,当为直角三角形时,的长为 .
34.(2023·湖南郴州·校考三模)如图1,对于平面内的点A、P,如果将线段PA绕点P逆时针旋转90°得到线段PB,就称点B是点A关于点P的“放垂点”.如图2,已知点,点P是y轴上一点,点B是点A关于点P的“放垂点”,连接AB、OB,则的最小值是 .
35.(2023·黑龙江绥化·统考模拟预测)在三角形纸片中,,,,将该纸片沿过点的直线折叠,使点落在斜边上的一点处,折痕记为(如图1),剪去后得到双层(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 .
36.(2023·福建龙岩·统考模拟预测)如图,已知,,,求证:.
37.(2023·湖南郴州·校考三模)如图,在中,是边上的中线,点E是的中点.过点A作交的延长线于点F,连接.
(1)求证:;
(2)若,试判断四边形的形状,并证明你的结论;
(3)在(2)的情况下,如果,点M在线段上移动,当有最小值时,求的长度.
38.(2023·浙江金华·统考一模)如图,在中,,,点P是边上的动点,连接并延长交直线于点E,将沿直线折叠得到,直线交直线于F.
(1)求证:.
(2)若四边形为菱形,且.求的值.
(3)若点P为的中点,在改变长度的过程中,当成为以为腰的等腰三角形时,求的长.
39.(2023·山东济宁·校联考三模)测量旗杆的高度,在C处测得旗杆顶端的仰角为,朝旗杆方向前进20米到达D处,再次测得旗杆的仰角为,求旗杆的高度.
40.(2023·新疆和田·和田市第三中学校考二模)某校数学兴趣小组开展“无人机测旗杆高度”的活动:已知无人机的飞行高度为,当无人机飞行至处时,观测旗杆顶部的俯角为,继续飞行到达处,测得旗杆顶部的俯角为,则旗杆的高度约为多少米.(参考数据:)
41.(2023·贵州黔东南·统考二模)某校“数学活动小组”准备测量学校旗杆的高,他们设计的测量方案为:如图,测角仪在C处测得旗杆顶部的仰角为40°,将测角仪向右移动11m到点E处测得旗杆顶部的仰角为60°,已知测角仪的高,点A,B,C,D,E,F在同一平面内.请你根据他们的测量数据计算学校旗杆的高.
(参考数据:,,,,结果精确到0.1m)
42.(2023·四川成都·统考二模)如图,有大树和建筑物,从建筑物的顶部处看树顶处的仰角为,看树干处的俯角为.若在同一水平地面上,已知米,米.求大树的高度(参考数据:,,).
43.(2023·安徽六安·校考模拟预测)伴随着北京冬奥会的成功举办,很多学校掀起了学习冰雪项目的热潮.如图,滑雪轨道由、两部分组成,为,为.一位同学乘滑雪板沿此轨道由点滑到了点,若的坡度为,与水平面的夹角为,则他下降的高度为多少米?(精确到1米.参考数据:,,).
44.(2023·天津西青·统考二模)如图,四边形ABCD是正方形,点E在BC边上,点F在CD的延长线上,满足,连接EF与对角线BD交于点G,连接AF,AG,若,则AG的长为 .
45.(2023·江苏泰州·统考二模)如图,在平面直角坐标系中,的顶点、分别是直线与坐标轴的交点,点,点是边上的一点,,垂足为,点在边上,且、两点关于轴上某点成中心对称,连接、.线段长度的最小值为 .
46.(2023·四川攀枝花·统考二模)如图,在四边形中,相交于点O,O是的中点,.
(1)求证:四边形是平行四边形;
(2)若,求四边形的面积.
47.(2023·广西柳州·统考二模)综合与实践
(1)问题发现:如图1,和均为等腰三角形,,,,点、、在同一条直线上,连接.
①求证:;将下列解答过程补充完整.
证明:,
________,
,
在和中,
,
,
;
②若,则的度数为________.
(2)类比探究:如图2,和均为等腰直角三角形,,点、、在同一条直线上,为中边上的高,连接.请判断、与三条线段的数量关系,并说明理由.
(3)拓展延伸:在(2)的条件下,若,,请直接写出四边形的面积.
48.(2023·河南周口·统考二模)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).
(1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积与S的关系为__________;
(2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点M,N.
①如图2,当时,试判断重叠部分的形状,并说明理由;
②如图3,当时,求重叠部分四边形的面积(结果保留根号);
(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
(参考数据:)
49.(2023·河南新乡·校联考二模)如图1是鹤壁市玄天洞石塔,原名玲珑塔,是我省现存最大的一座楼阁式石塔,玄天洞石塔坐东朝西,为九级重檐平面四角楼阁式建筑,此塔始建于元朝,重建于明代,时称天塔,因该塔屹立于淇河北岸玄天洞东南,又得名玄天洞石塔,某数学兴趣小组开展了测量“玄天洞石塔的高度”的实践活动,
具体过程如下:
方案设计:如图2,石塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B三点在同一条直线上)
数据收集:通过实地测量,地面上A,B两点的距离为20m,∠CAD=45°,∠CBD=58°.
问题解决:求石塔CD的高度.
(结果保留一位小数.参考数据:sin58°≈0.85,cs58°≈0.53,tan58°≈1.60)
50.(2023·北京昌平·统考二模)船航行的海岸附近有暗礁,为了使船不触上暗礁,可以在暗礁的两侧建立两座灯塔.只要留心从船上到两个灯塔间的角度不超过一定的大小,就不用担心触礁.如图所示的网格是正方形网格,点是网格线交点,当船航行到点的位置时,此时与两个灯塔间的角度(的大小)一定无触礁危险.那么,对于四个位置,船处于___________时,也一定无触礁危险.( )
A.位置B.位置C.位置D.位置
相关试卷
这是一份【中考真题汇编】2019-2023年 5年真题分项汇编 初中数学 专题13 解三角形与三角形全等(教师版+学生版).zip,文件包含中考真题汇编2019-2023年5年真题分项汇编专题13解三角形与三角形全等解析版docx、中考真题汇编2019-20235年真题分项汇编专题13解三角形与三角形全等学生版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
这是一份专题19 概率:5年(2019-2023)中考1年模拟数学真题分类汇编(全国通用),文件包含专题19概率5年2019-2023中考1年模拟数学真题分项汇编全国通用解析版docx、专题19概率学生版-5年2019-2023中考1年模拟数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份专题17几何压轴题5年(2019-2023)中考1年模拟数学真题分类汇编(全国通用),文件包含专题17几何压轴题5年2019-2023中考1年模拟数学真题分项汇编全国通用解析版docx、专题17几何压轴题学生版-5年2019-2023中考1年模拟数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共148页, 欢迎下载使用。