







新高考数学一轮复习讲练测课件第4章§4.2同角三角函数基本关系式及诱导公式 (含解析)
展开这是一份新高考数学一轮复习讲练测课件第4章§4.2同角三角函数基本关系式及诱导公式 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,-sinα,sinα,cosα,-cosα,tanα,-tanα,故D正确等内容,欢迎下载使用。
2.掌握诱导公式,并会简单应用.
1.同角三角函数的基本关系(1)平方关系: .(2)商数关系: .
sin2α+cs2α=1
2.三角函数的诱导公式
同角三角函数的基本关系式的常见变形sin2α=1-cs2α=(1+cs α)(1-cs α);cs2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cs α)2=1±2sin αcs α.
判断下列结论是否正确(请在括号中打“√”或“×”)(1)使sin(π+α)=-sin α成立的条件是α为锐角.( )
(3)若α,β为锐角,则sin2α+cs2β=1.( )
因为θ∈(0,π),所以sin θ>0,cs θ<0,
∴α是第二或第三象限角.①若α是第二象限角,
综上,13sin α+5tan α=0.
(1)应用公式时注意方程思想的应用:对于sin α+cs α,sin αcs α,sin α-cs α这三个式子,利用(sin α±cs α)2=1±2sin αcs α,可以知一求二.(2)注意公式逆用及变形应用:1=sin2α+cs2α,sin2α=1-cs2α,cs2α=1-sin2α.
因为α∈(0,π),所以sin α>0,所以cs α<0,所以sin α-cs α>0,
sin(3π-x)=sin(π-x)=sin x,
诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了;(2)化简:统一角,统一名,同角名少为终了.
同角三角函数基本关系式和诱导公式的综合应用
消去sin β,得tan α=3,∴sin α=3cs α,代入sin2α+cs2α=1,
由-π
(1)利用同角三角函数基本关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数值符号的影响.
1.sin 1 620°等于A.0 B.C.1 D.-1
由诱导公式,sin 1 620°=sin(180°+4×360°)=sin 180°=0.
3.已知角α的顶点在原点,始边与x轴非负半轴重合,终边与直线2x+y+3=0平行,则 的值为A.-2 B. C.2 D.3
因为角α的终边与直线2x+y+3=0平行,即角α的终边在直线y=-2x上,
在△ABC中,有A+B+C=π,则sin(A+B)=sin(π-C)=sin C,A正确;
cs(A+B)=cs(π-C)=-cs C,D错误.
因为tan2α-3tan αsin α-4sin2α=0,所以(tan α-4sin α)(tan α+sin α)=0,
10.已知角θ 的终边与单位圆x2+y2=1在第四象限交于点P,且点P的坐标为 .(1)求tan θ的值;
A.-2 B.-1 C.2 D.1
所以原表达式的取值为-2或2.
12.黑洞原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再出来,数字中也有类似的“黑洞”,任意取一个数字串,长度不限,依次写出该数字串中偶数的个数、奇数的个数以及总的数字个数,把这三个数从左到右写成一个新数字串;重复以上工作,最后会得到一个反复出现的数字,我们称它为“数字黑洞”,如果把这个数字设为a,则 等于
根据“数字黑洞”的定义,任取数字2 021,经过第一步之后变为314,经过第二步之后变为123,再变为123,再变为123,所以数字黑洞为123,即a=123,
16.(2022·上海模拟)在角θ1,θ2,θ3,…,θ29的终边上分别有一点P1,P2,P3,…,P29,如果点Pk的坐标为(sin(15°-k°),sin(75°+k°)),1≤k≤29,k∈N,则cs θ1+cs θ2+cs θ3+…+cs θ29=_____.
∵sin(75°+k°)=sin(90°-(15°-k°))=cs(15°-k°),∴Pk(sin(15°-k°),cs(15°-k°)),
=sin(15°-k°),∴cs θ1+cs θ2+cs θ3+…+cs θ29=sin 14°+sin 13°+sin 12°+…+sin(-14°),
相关课件
这是一份新高考数学一轮复习讲练课件4.2 同角三角函数的基本关系与诱导公式(含解析),共27页。
这是一份新高考数学一轮复习课件 第4章 §4.2 同角三角函数基本关系式及诱导公式,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习讲与练4.2《同角三角函数的基本关系与诱导公式》(3份打包,课件+教案+配套练习,含解析)