新高考数学一轮复习讲练测课件第1章§1.4基本不等式 (含解析)
展开1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.
(1)基本不等式成立的条件: .(2)等号成立的条件:当且仅当 时,等号成立.(3)其中 叫做正数a,b的算术平均数, 叫做正数a,b的几何平均数.
2.几个重要的不等式(1)a2+b2≥ (a,b∈R).(2) ≥ (a,b同号).(3)ab≤ (a,b∈R).(4) ≥ (a,b∈R).以上不等式等号成立的条件均为a=b.
3.利用基本不等式求最值(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值 .(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值 .注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.
判断下列结论是否正确(请在括号中打“√”或“×”)
(3)若x>0,y>0且x+y=xy,则xy的最小值为4.( )
1.若正实数a,b满足a+4b=ab,则ab的最小值为A.16 B.8 C.4 D.2
因为正实数a,b满足a+4b=ab,
所以ab≥16,当且仅当a=4b,即a=8,b=2时等号成立.
3.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是_____ m2.
设矩形的一边为x m,面积为y m2,
当且仅当x=10-x,即x=5时,等号成立,∴ymax=25,即矩形场地的最大面积是25 m2.
由题意可知,x-2>0,
则2x+y的最小值为16.
命题点3 消元法例3 (2023·烟台模拟)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为_____.
方法一 (换元消元法)
即(x+3y)2+12(x+3y)-108≥0,令x+3y=t,则t>0且t2+12t-108≥0,得t≥6,即x+3y的最小值为6.
方法二 (代入消元法)
所以x+3y的最小值为6.
延伸探究 本例条件不变,求xy的最大值.
当且仅当x=3y,即x=3,y=1时取等号,∴xy的最大值为3.
(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.
跟踪训练1 (1)(多选)若正实数a,b满足a+b=1,则下列说法错误的是
令t=x-1,∴x=t+1,∵x>1,∴t>0,
例4 (1)若0基本不等式的常见变形应用
∵0a+b,
(2)(2023·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为
在Rt△OCF中,由勾股定理可得,
跟踪训练2 (2022·漳州质检)已知a,b为互不相等的正实数,则下列四个式子中最大的是
∵a,b为互不相等的正实数,
例5 中华人民共和国第十四届运动会在陕西省举办,某公益团队联系全运会组委会举办一场纪念品展销会,并将所获利润全部用于社区体育设施建设.据市场调查,当每套纪念品(一个会徽和一个吉祥物)售价定为x元时,销售量可达到(15-0.1x)万套.为配合这个活动,生产纪念品的厂家将每套纪念品的供货价格分为固定价格和浮动价格两部分,其中固定价格为50元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.约定不计其他成本,即销售每套纪念品的利润=售价-供货价格.(1)每套会徽及吉祥物售价为100元时,能获得的总利润是多少万元?
每套会徽及吉祥物售价为100元时,销售量为15-0.1×100=5(万套),
总利润为5×(100-52)=240(万元).
(2)每套会徽及吉祥物售价为多少元时,单套的利润最大?最大值是多少元?
因为15-0.1x>0,所以0
利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.
跟踪训练3 某公益广告公司拟在一张矩形海报纸(记为矩形ABCD,如图)上设计三个等高的宣传栏(栏面分别为一个等腰三角形和两个全等的直角梯形),宣传栏(图中阴影部分)的面积之和为1 440 cm2.为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为2 cm.当直角梯形的高为_______ cm时,用纸量最少(即矩形ABCD的面积最小).
设直角梯形的高为x cm,∵宣传栏(图中阴影部分)的面积之和为1 440 cm2,且海报上所有水平方向和竖直方向的留空宽度均为2 cm,
又x2≠-1,故B错误;
即x=0时取等号,故C正确;
即sin x=1时取等号,因为sin x∈(0,1),故D错误.
2.已知a>0,b>0,a+b=2,则lg a+lg b的最大值为
∵a>0,b>0,a+b=2,
当且仅当a=b=1时,取等号.∴lg a+lg b的最大值为0.
3.(2021·新高考全国Ⅰ)已知F1,F2是椭圆C: =1的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为A.13 B.12 C.9 D.6
当且仅当|MF1|=|MF2|=3时等号成立.所以|MF1|·|MF2|的最大值为9.
6.(多选)(2023·黄冈模拟)若a>0,b>0,且a+b=4,则下列不等式恒成立的是
当且仅当a=b=2时等号成立,则lg2a+lg2b=lg2ab≤lg24=2,当且仅当a=b=2时等号成立,故A,C不恒成立,D恒成立;
当且仅当a=b=2时等号成立,故B恒成立.
当且仅当x=0时,等号成立.
因为0
10.某企业为了进一步增加市场竞争力,计划利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本300万元,每生产x(千部)手机,需另投入成本R(x)万元,且R(x)=通过市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求出今年的利润W(x)(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本);
当0
若0
11.(2023·湘潭模拟)已知α,β为锐角,且tan α-tan β+2tan αtan2β=0,则tan α的最大值为
因为β为锐角,所以tan β>0,
12.(2022·天津模拟)若a>0,b>0,则(a+b)2+ 的最小值为________.
13.《几何原本》中的几何代数法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB为直径作半圆,过点C作AB的垂线交半圆于D,连接OD,AD,BD,过点C作OD的垂线,垂足为E,则该图形可以完成的无字证明为
根据图形,利用射影定理得CD2=DE·OD,
14.(多选)(2022·新高考全国Ⅱ)若x,y满足x2+y2-xy=1,则A.x+y≤1 B.x+y≥-2C.x2+y2≤2 D.x2+y2≥1
解得-2≤x+y≤2,当且仅当x=y=-1时,x+y=-2,当且仅当x=y=1时,x+y=2,所以A错误,B正确;
解得x2+y2≤2,当且仅当x=y=±1时取等号,所以C正确;
2024年高考数学一轮复习讲练测(新教材新高考)第04讲 基本不等式及其应用(课件): 这是一份2024年高考数学一轮复习讲练测(新教材新高考)第04讲 基本不等式及其应用(课件),共35页。PPT课件主要包含了考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。
新高考数学一轮复习讲练课件1.4 基本不等式(含解析): 这是一份新高考数学一轮复习讲练课件1.4 基本不等式(含解析),共39页。
新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析): 这是一份新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,x轴和y轴,a2=b2+c2,命题点2待定系数法,命题点1离心率,因为点P在椭圆C上,即4c2=m2,又因为0e1等内容,欢迎下载使用。