终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第2节 空间点、直线、平面之间的位置关系 (含解析)

    立即下载
    加入资料篮
    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第2节 空间点、直线、平面之间的位置关系 (含解析)第1页
    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第2节 空间点、直线、平面之间的位置关系 (含解析)第2页
    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第2节 空间点、直线、平面之间的位置关系 (含解析)第3页
    还剩18页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第2节 空间点、直线、平面之间的位置关系 (含解析)

    展开

    这是一份新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第2节 空间点、直线、平面之间的位置关系 (含解析),共21页。试卷主要包含了基本事实4和等角定理,异面直线所成的角等内容,欢迎下载使用。
    第2节 空间点、直线、平面之间的位置关系
    考试要求 1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.


    1.与平面有关的基本事实及推论
    (1)与平面有关的三个基本事实
    基本事实
    内容
    图形
    符号
    基本
    事实1
    过不在一条直线上的三个点,有且只有一个平面

    A,B,C三点不共线⇒存在唯一的α使A,B,C∈α
    基本
    事实2
    如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内

    A∈l,B∈l,且A∈α,B∈α⇒l⊂α
    基本
    事实3
    如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

    P∈α,且P∈β⇒α∩β=l,且P∈l
    (2)基本事实1的三个推论
    推论
    内容
    图形
    作用
    推论1
    经过一条直线和这条直线外一点,有且只有一个平面

    确定平面的依据
    推论2
    经过两条相交直线,有且只有一个平面

    推论3
    经过两条平行直线,有且只有一个平面

    2.空间点、直线、平面之间的位置关系

    直线与直线
    直线与平面
    平面与平面
    平行关系
    图形
    语言



    符号
    语言
    a∥b
    a∥α
    α∥β
    相交关系
    图形
    语言



    符号
    语言
    a∩b=A
    a∩α=A
    α∩β=l
    独有关系
    图形
    语言



    符号
    语言
    a,b是
    异面直线
    a⊂α

    3.基本事实4和等角定理
    平行公理:平行于同一条直线的两条直线互相平行.
    等角定理:如果空间中两个角的两边分别对应平行,那么这两个角相等或互补.
    4.异面直线所成的角
    (1)定义:已知a,b是两条异面直线,经过空间任意一点O作直线a′∥a,b′∥b,把a′与b′所成的角叫做异面直线a与b所成的角(或夹角).
    (2)范围:.

    1.证明点共线与线共点都需用到基本事实3.
    2.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.

    1.思考辨析(在括号内打“√”或“×”)
    (1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(  )
    (2)两两相交的三条直线最多可以确定三个平面.(  )
    (3)如果两个平面有三个公共点,则这两个平面重合.(  )
    (4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.(  )
    答案 (1)× (2)√ (3)× (4)×
    解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.
    (3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.
    (4)由于a不平行于平面α,且a⊄α,则a与平面α相交,故平面α内有与a相交的直线,故错误.
    2.(多选)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系可能是(  )
    A.垂直 B.相交 C.异面 D.平行
    答案 ABC
    解析 依题意,m∩α=A,n⊂α,
    ∴m与n可能异面、相交(垂直是相交的特例),一定不平行.
    3.(2022·重庆质检)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )
    A.l与l1,l2都不相交
    B.l与l1,l2都相交
    C.l至多与l1,l2中的一条相交
    D.l至少与l1,l2中的一条相交
    答案 D
    解析 由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.
    4.(2018·全国Ⅱ卷)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为(  )
    A. B. C. D.
    答案 C
    解析 如图,连接BE,因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即为∠EAB.不妨设正方体的棱长为2,则CE=1,BC=2,由勾股定理得BE=.又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB==.
    5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过(  )
    A.点A B.点B
    C.点C但不过点M D.点C和点M
    答案 D
    解析 ∵AB⊂γ,M∈AB,∴M∈γ.
    又α∩β=l,M∈l,∴M∈β.
    根据基本事实3可知,M在γ与β的交线上.
    同理可知,点C也在γ与β的交线上.
    6.(多选)(2021·长沙调研)如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是(  )
    A.AP与CM是异面直线
    B.AP,CM,DD1相交于一点
    C.MN∥BD1
    D.MN∥平面BB1D1D
    答案 BD
    解析 连接MP,AC(图略),因为MP∥AC,MP≠AC,所以AP与CM是相交直线,
    又面A1ADD1∩面C1CDD1=DD1,
    所以AP,CM,DD1相交于一点,则A不正确,B正确.
    令AC∩BD=O,连接OD1,ON.
    因为M,N分别是C1D1,BC的中点,
    所以ON∥D1M∥CD,ON=D1M=CD,
    则四边形MNOD1为平行四边形,所以MN∥OD1,
    因为MN⊄平面BD1D,OD1⊂平面BD1D,
    所以MN∥平面BD1D,C不正确,D正确.

    考点一 基本事实的应用
    例1 如图所示,已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;
    (2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
    证明 (1)∵EF是△D1B1C1的中位线,
    ∴EF∥B1D1.
    在正方体AC1中,B1D1∥BD,∴EF∥BD.
    ∴EF,BD确定一个平面,即D,B,F,E四点共面.
    (2)在正方体AC1中,设平面A1ACC1为α,平面BDEF为β.
    ∵Q∈A1C1,∴Q∈α.
    又Q∈EF,∴Q∈β,
    则Q是α与β的公共点,同理,P是α与β的公共点,
    ∴α∩β=PQ.
    又A1C∩β=R,∴R∈A1C.
    ∴R∈α,且R∈β,
    则R∈PQ,故P,Q,R三点共线.
    感悟提升 共面、共线、共点问题的证明
    (1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.
    (2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.
    (3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
    训练1 如图,在空间四边形ABCD中,E,F分别是AB和BC上的点,G,H分别是CD和AD上的点.若EH与FG相交于点K.
    求证:EH,BD,FG三条直线相交于同一点.
    证明 因为K∈EH,EH⊂平面ABD,
    所以K∈平面ABD,同理K∈平面CBD,而平面ABD∩平面CBD=BD,
    因此K∈BD,所以EH,BD,FG三条直线相交于同一点.
     考点二 空间位置关系的判断
    例2 (1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是(  )
    A.平行
    B.异面
    C.相交或平行
    D.平行或异面或相交均有可能
    答案 D
    解析 根据条件作出示意图,容易得到以下三种情况均有可能,

    如图可知AB,CD有相交,平行,异面三种情况,故选D.
    (2)(多选)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,则在这个正四面体中(  )
    A.GH与EF平行
    B.BD与MN为异面直线
    C.GH与MN成60°角
    D.DE与MN垂直
    答案 BCD
    解析 还原成正四面体A-DEF,如图所示,
    其中H与N重合,A,B,C三点重合,易知GH与EF异面,BD与MN异面.
    连接GM,∵△GMH为等边三角形,
    ∴GH与MN成60°角.
    由图易得DE⊥AF,又MN∥AF,
    ∴MN⊥DE,
    因此正确的选项是B,C,D.
    感悟提升 空间中两直线位置关系的判定,主要是异面,平行和垂直的判定.异面直线的判定可采用直接法或反证法;平行直线的判定可利用三角形(梯形)中位线的性质、基本事实4及线面平行与面面平行的性质定理;垂直关系的判定往往利用线面垂直或面面垂直的性质来解决.
    训练2 (1)(多选)(2022·福州质检)四棱锥P-ABCD的所有棱长都相等,M,N分别为PA,CD的中点,下列说法正确的是(  )
    A.MN与PD是异面直线
    B.MN∥平面PBC
    C.MN∥AC
    D.MN⊥PB
    答案 ABD
    解析 如图所示,取PB的中点H,连接MH,HC,
    由题意知,四边形MHCN为平行四边形,且MN∥HC,所以MN∥平面PBC,设四边形MHCN确定平面α,又D∈α,故M,N,D共面,但P∉平面α,D∉MN,因此MN与PD是异面直线;故A,B说法均正确.
    若MN∥AC,由于CH∥MN,则CH∥AC,
    事实上AC∩CH=C,C说法不正确;
    因为PC=BC,H为PB的中点,所以CH⊥PB,又CH∥MN,所以MN⊥PB,D说法正确.
    (2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是(  )
    A.相交但不垂直 B.相交且垂直
    C.异面 D.平行
    答案 D
    解析 连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,

    连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且=,=,所以=,所以EF∥BD1.
     考点三 异面直线所成的角
    例3 (1)(2021·全国乙卷)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为(  )
    A. B. C. D.
    答案 D
    解析 如图,连接C1P,因为ABCD-A1B1C1D1是正方体,且P为B1D1的中点,所以C1P⊥B1D1,又C1P⊥BB1,B1D1∩BB1=B1,B1D1,BB1⊂平面B1BP,所以C1P⊥平面B1BP.又BP⊂平面B1BP,所以有C1P⊥BP.连接BC1,则AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体ABCD-A1B1C1D1的棱长为2,则在Rt△C1PB中,C1P=B1D1=,BC1=2,sin ∠PBC1==,所以∠PBC1=.
    (2)将正方形ABCD沿对角线AC折起,并使得平面ABC垂直于平面ACD,直线AB与CD所成的角为(  )
    A.90° B.60° C.45° D.30°
    答案 B
    解析 如图,取AC,BD,AD的中点,分别为O,M,N,
    则ON∥CD,MN∥AB,
    且ON=CD,
    MN=AB,
    所以∠ONM或其补角即为所求的角.
    因为平面ABC垂直于平面ACD,平面ABC∩平面ACD=AC,BO⊥AC,AC⊂平面ACD,
    所以BO⊥平面ACD,所以BO⊥OD.
    设正方形边长为2,OB=OD=,
    所以BD=2,则OM=BD=1.
    所以ON=MN=OM=1.
    所以△OMN是等边三角形,∠ONM=60°.
    所以直线AB与CD所成的角为60°.
    感悟提升 1.综合法求异面直线所成角的步骤:
    (1)作:通过作平行线得到相交直线.
    (2)证:证明所作角为异面直线所成的角(或其补角).
    (3)求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.
    2.向量法:利用向量的数量积求所成角的余弦值.
    训练3 (1)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为(  )
    A. B. C. D.
    答案 C
    解析 法一 如图,补上一相同的长方体CDEF-C1D1E1F1,连接DE1,B1E1.易知AD1∥DE1,则∠B1DE1为异面直线AD1与DB1所成角.因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,所以DE1=
    ==2,
    DB1==,B1E1===,在△B1DE1中,由余弦定理,
    得cos∠B1DE1==,即异面直线AD1与DB1所成角的余弦值为.
    法二 如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM,易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角.因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,AD1==2,DM==,
    DB1==,所以OM=AD1=1,OD=DB1=,于是在△DMO中,由余弦定理,
    得cos∠MOD==,即异面直线AD1与DB1所成角的余弦值为.
    (2)(2022·湖北重点高中联考)在直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,且斜边BC=2,D是BC的中点,若AA1=,则异面直线A1C与AD所成角的大小为(  )
    A.30° B.45° C.60° D.90°
    答案 C
    解析 如图,取B1C1的中点D1,连接A1D1,则AD∥A1D1,∠CA1D1(或其补角)就是异面直线A1C与AD所成的角.
    连接D1C.
    ∵A1B1=A1C1,∴A1D1⊥B1C1,又A1D1⊥CC1,B1C1∩CC1=C1,∴A1D1⊥平面BCC1B1,∵D1C⊂平面BCC1B1,∴A1D1⊥D1C,∴△A1D1C为直角三角形,
    在Rt△A1CD1中,A1C=2,CD1=,
    ∴∠CA1D1=60°.
    立体几何中的截线、截面问题
    利用平面的性质确定截面的形状是解决问题的关键.
    (1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.
    (2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.
    一、截面问题
    例1 (1)在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=DD1,NB=BB1,那么正方体中过M,N,C1的截面图形是(  )
    A.三角形 B.四边形
    C.五边形 D.六边形
    答案 C
    解析 先确定截面上的已知边与几何体上和其共面的边的交点,再确定截面与几何体的棱的交点.
    设直线C1M,CD相交于点P,直线C1N,CB相交于点Q,连接PQ交直线AD于点E,交直线AB于点F,则五边形C1MEFN为所求截面图形.
    (2)(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为(  )
    A. B. C. D.
    答案 A
    解析 如图,依题意,平面α与棱BA,BC,BB1所在直线所成角都相等,容易得到平面AB1C符合题意,进而所有平行于平面AB1C的平面均符合题意.
    由对称性,知过正方体ABCD-A1B1C1D1中心的截面面积应取最大值,此时截面为正六边形EFGHIJ.
    易知正六边形EFGHIJ的边长为,将该正六边形分成6个边长为的正三角形.
    故其面积为6××=.
    二、截线问题
    例2 (1)(2020·新高考全国Ⅰ卷)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,为半径的球面与侧面BCC1B1的交线长为__________.
    答案 
    解析 如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1Q,D1E,EP,EQ,由∠BAD=60°,AB=AD,知△ABD为等边三角形,∴D1B1=DB=2,∴△D1B1C1为等边三角形,则D1E=且D1E⊥平面BCC1B1,∴E为球面截侧面BCC1B1所得截面圆的圆心,设截面圆的半径为r,则r===.
    可得EP=EQ=,∴球面与侧面BCC1B1的交线为以E为圆心的圆弧PQ.
    又D1P=,∴B1P==1,同理C1Q=1,
    ∴P,Q分别为BB1,CC1的中点,
    ∴∠PEQ=,
    知的长为×=.
    (2)已知正方体ABCD-A1B1C1D1的棱长为3,E,F分别为BC,CD的中点,P是线段A1B上的动点,C1P与平面D1EF的交点Q的轨迹长为________.
    答案 
    解析 如图所示,
    连接EF,A1B,连接A1C1,B1D1交于点M,连接B1E,BC1交于点N,
    由EF∥B1D1,即E,F,B1,D1共面,
    由P是线段A1B上的动点,当P重合于A1或B时,C1A1,C1B与平面D1EF的交点分别为M,N,
    即Q的轨迹为MN,
    由棱长为3,
    得C1M=A1C1=3,则BC1=6,
    又==,
    则NC1=BC1=4,
    由A1B=BC1=A1C1,
    得∠A1C1B=60°,
    则MN=
    ==.


    1.a,b,c是两两不同的三条直线,下面四个命题中,真命题是(  )
    A.若直线a,b异面,b,c异面,则a,c异面
    B.若直线a,b相交,b,c相交,则a,c相交
    C.若a∥b,则a,b与c所成的角相等
    D.若a⊥b,b⊥c,则a∥c
    答案 C
    解析 若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.
    2.给出以下四个命题:
    ①依次首尾相接的四条线段必共面;
    ②过不在同一条直线上的三点,有且只有一个平面;
    ③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;
    ④垂直于同一直线的两条直线必平行.
    其中正确命题的个数是(  )
    A.0 B.1 C.2 D.3
    答案 B
    解析 ①中,空间四边形的四条线段不共面,故①错误;
    ②中,由基本事实1知道,过不在同一条直线上的三点,有且只有一个平面,故②正确;
    ③中,由空间角的等角定理知,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误;
    ④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.
    3.(多选)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(  )

    答案 BD
    解析 图A中,直线GH∥MN;
    图B中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;
    图C中,连接MG,GM∥HN,因此GH与MN共面;
    图D中,G,M,N共面,但H∉平面GMN,G∉MN,
    因此GH与MN异面.
    4.(多选)如图所示,在正方体ABCD-A1B1C1D1中,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是(  )
    A.A,M,O三点共线 B.A,M,O,A1共面
    C.A,M,C,O共面 D.B,B1,O,M共面
    答案 ABC
    解析 ∵M∈A1C,A1C⊂平面A1ACC1,
    ∴M∈平面A1ACC1,
    又∵M∈平面AB1D1,
    ∴M在平面AB1D1与平面A1ACC1的交线AO上,
    即A,M,O三点共线,
    ∴A,M,O,A1共面且A,M,C,O共面,
    ∵平面BB1D1D∩平面AB1D1=B1D1,
    ∴M在平面BB1D1D外,
    即B,B1,O,M不共面,故选A,B,C.
    5.(多选)(2021·潍坊质检)如图,已知二面角A-BD-C的大小为,G,H分别是BC,CD的中点,E,F分别在AD,AB上,==,且AC⊥平面BCD,则以下说法正确的是(  )
    A.E,F,G,H四点共面
    B.FG∥平面ADC
    C.若直线FG,HE交于点P,则P,A,C三点共线
    D.若△ABD的面积为6,则△BCD的面积为3
    答案 ACD
    解析 由==知EF綉BD.
    又GH綉BD,∴EF∥GH,
    因此E,F,G,H共面,A项正确;
    假设FG∥平面ADC成立,因为平面ABC∩平面DAC=AC,
    所以FG∥AC,又G是BC的中点,所以F是AB的中点,与=矛盾,B项不正确;
    因为FG⊂平面ABC,P∈FG,所以P∈平面ABC,同理P∈平面ADC,
    因为平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线,因此C正确;
    易知S△BCD=cos·S△ABD=×6=3,D正确.
    6.(2022·广州检测)我国古代的数学著作《九章算术·商功》中,将底面是直角三角形的直三棱柱称为“堑堵”.在如图所示的“堑堵”ABC-A1B1C1中,AB=AC=AA1=2,M、N分别是BB1和A1C1的中点,则平面AMN截“堑堵”ABC-A1B1C1所得截面图形的面积为(  )
    A. B. C. D.
    答案 A

    解析 延长AN,与CC1的延长线交于点P,则P∈平面BB1C1C,连接PM,与B1C1交于点E,连接NE,得到的四边形AMEN是平面AMN截“堑堵”ABC-A1B1C1所得截面图形,
    由题意解三角形可得NE=ME=,
    AM=AN=,MN=.
    ∴△AMN中MN边上的高
    h1==,△EMN中MN边上的高h2==.
    ∴AMN截“堑堵”ABC-A1B1C1所得截面图形的面积S=S△AMN+S△EMN
    =MN·(h1+h2)
    =××=.
    7.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.

    答案 4
    解析 因为AB∥CD,由图可以看出EF平行于正方体左右两个侧面,与另外四个侧面相交.
    8.在正方体ABCD-A1B1C1D1中,点O是底面ABCD的中心,过O点作一条直线l与A1D平行,设直线l与直线OC1的夹角为θ,则cos θ=________.
    答案 
    解析 如图所示,设正方体的表面ABB1A1的中心为P,容易证明OP∥A1D,所以直线l即为直线OP,角θ即∠POC1.
    设正方体的棱长为2,则
    OP=A1D=,OC1=,PC1=,
    则cos∠POC1===.
    9.在正方体ABCD-A1B1C1D1中,E是BC的中点,平面α经过直线BD且与直线C1E平行,若正方体的棱长为2,则平面α截正方体所得的多边形的面积为________.

    答案 
    解析 如图,过点B作BM∥C1E交B1C1于点M,过点M作BD的平行线,交C1D1于点N,连接DN,则平面BDNM即为符合条件的平面α,
    由图可知M,N分别为B1C1,C1D1的中点,
    故BD=2,MN=,
    且BM=DN=,
    ∴等腰梯形MNDB的高为
    h==,
    ∴梯形MNDB的面积为×(+2)×=.
    10.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD且BC=AD,BE∥AF且BE=AF,G,H分别为FA,FD的中点.
    (1)证明:四边形BCHG是平行四边形;
    (2)C,D,F,E四点是否共面?为什么?
    (1)证明 由已知FG=GA,FH=HD,
    可得GH綉AD.又BC綉AD,
    ∴GH綉BC.
    ∴四边形BCHG为平行四边形.
    (2)解 共面.∵BE綉AF,G是FA的中点,
    ∴BE綉FG,∴四边形BEFG为平行四边形,∴EF∥BG.
    由(1)知BG綉CH,∴EF∥CH,
    ∴EF与CH共面.
    又D∈FH,∴C,D,F,E四点共面.
    11.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
    (1)求四棱锥O-ABCD的体积;
    (2)求异面直线OC与MD所成角的正切值.
    解 (1)由已知可求得正方形ABCD的面积S=4,
    所以四棱锥O-ABCD的体积
    V=×4×2=.
    (2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,
    ∴ME∥OC,
    则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=,EM=,MD=,
    ∵()2+()2=()2,
    即DE2+EM2=MD2,
    ∴△DEM为直角三角形,且∠DEM=90°,
    ∴tan∠EMD===.
    ∴异面直线OC与MD所成角的正切值为.

    12.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别为棱AB,A1D1,C1D1的中点,经过E,F,G三点的平面被正方体所截,则截面图形的面积为(  )

    A. B. C.1 D.2
    答案 B
    解析 如图,分别取BC,AA1,CC1的中点为H,M,N,连接EH,HN,GN,FM,ME,容易得出FG∥EH,GN∥ME,HN∥FM,
    则点E,F,G,H,M,N共面,
    且FG=EH=GN=ME=HN=FM==,
    即经过E,F,G三点的截面图形为正六边形EHNGFM.
    连接MN,EG,FH,且相交于点O,
    因为MN=AC==,
    所以OE=OH=ON=OG=OF=OM=,
    则截面图形的面积为
    ×6=.
    13.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=2,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的截面圆的面积是________.
    答案 2π
    解析 如图,设△BDC的中心为O1,球O的半径为R,

    连接AO1,O1D,OD,O1E,OE,
    则O1D=3sin 60°×=,
    AO1==3,
    在Rt△OO1D中,
    R2=3+(3-R)2,解得R=2,
    ∵BD=3BE,DE=2,在△DEO1中,
    O1E==1,
    ∴OE==,
    过点E作球O的截面,当截面与OE垂直时,截面圆的面积最小,
    此时截面圆的半径为=,面积为2π.
    14.(2021·上海卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,边长为4,E为AB的中点,PE⊥平面ABCD.
    (1)若△PAB为等边三角形,求四棱锥P-ABCD的体积;
    (2)若CD的中点为F,PF与平面ABCD所成角为45°,求PC与AD所成角的正切值.
    解 (1)∵正方形ABCD的边长为4,且△PAB为等边三角形,E为AB的中点,
    ∴PE=PB·sin∠PBE=AB·sin 60°=2,
    又PE⊥平面ABCD,
    ∴四棱锥P-ABCD的体积VP-ABCD=×42×2=.
    (2)∵AD∥BC,
    ∴∠PCB即PC与AD所成的角.
    如图,连接EF,∵PE⊥平面ABCD,EF,BC⊂平面ABCD,
    ∴PE⊥EF,PE⊥BC,
    又PF与平面ABCD所成角为45°,
    即∠PFE=45°,
    ∴PE=EF·tan ∠PFE=4,
    ∴PB===2.
    又BC⊥AB,PE∩AB=E,PE,AB⊂平面PAB,
    ∴BC⊥平面PAB,
    又PB⊂平面PAB,∴BC⊥PB,
    ∴tan ∠PCB==,
    ∴PC与AD所成角的正切值为.

    相关试卷

    备考2024届高考数学一轮复习分层练习第七章立体几何与空间向量第2讲空间点直线平面之间的位置关系:

    这是一份备考2024届高考数学一轮复习分层练习第七章立体几何与空间向量第2讲空间点直线平面之间的位置关系,共4页。

    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第5节 空间向量及其应用 (含解析):

    这是一份新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第5节 空间向量及其应用 (含解析),共21页。试卷主要包含了空间向量的有关定理,空间向量的数量积,空间向量的坐标表示及其应用,直线的方向向量和平面的法向量,空间位置关系的向量表示等内容,欢迎下载使用。

    新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第4节 空间直线、平面的垂直 (含解析):

    这是一份新高考数学一轮复习课时过关练习第07章 立体几何与空间向量第4节 空间直线、平面的垂直 (含解析),共23页。试卷主要包含了直线与平面垂直,直线和平面所成的角,二面角,平面与平面垂直等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map