2017年安徽省中考数学试卷
展开2017年安徽省中考数学试卷
一、选择题(每题4分,共40分)
1.的相反数是( )
A. B.﹣ C.2 D.﹣2
2.计算(﹣a3)2的结果是( )
A.a6 B.﹣a6 C.﹣a5 D.a5
3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )
A. B. C. D.
4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为( )
A.16×1010 B.1.6×1010 C.1.6×1011 D.0.16×1012
5.不等式4﹣2x>0的解集在数轴上表示为( )
A. B. C. D.
6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )
A.60° B.50° C.40° D.30°
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )
A.280 B.240 C.300 D.260
8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足( )
A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16
9.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )
A. B. C. D.
10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )
A. B. C.5 D.
二、填空题(每题5分,共20分)
11.27的立方根为 .
12.因式分解:a2b﹣4ab+4b= .
13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为 .
14.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm.
三、(每题8分,共16分)
15.(8分)计算:|﹣2|×cos60°﹣()﹣1.
16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?
译文为:
现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
请解答上述问题.
四、(每题8分,共16分)
17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.
(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)
18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.
(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.
(2)画出△DEF关于直线l对称的三角形.
(3)填空:∠C+∠E= .
五、(每题10分,共20分)
19.(10分)【阅读理解】
我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.
【规律探究】
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .
【解决问题】
根据以上发现,计算:的结果为 .
20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.
(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.
21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根据以上数据完成下表:
| 平均数 | 中位数 | 方差 |
甲 | 8 | 8 |
|
乙 | 8 | 8 | 2.2 |
丙 | 6 |
| 3 |
(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
23.(14分)已知正方形ABCD,点M边AB的中点.
(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.
①求证:BE=CF;
②求证:BE2=BC•CE.
(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.
2017年安徽省中考数学试卷答案
1. B.2. A3. B.4. C.5. D.6. C.7. A.8. D.9. B.10. D.
11. 3.12. b(a﹣2)213.π.14. 40或.
15.解:原式=2×﹣3=﹣2.
16.解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,
∴8x﹣3=53,
答:共有7人,这个物品的价格是53元.
17.解:在Rt△ABC中,∵AB=600m,∠ABC=75°,
∴BC=AB•cos75°≈600×0.26≈156m,
在Rt△BDF中,∵∠DBF=45°,
∴DF=BD•sin45°=600×≈300×1.41≈423,
∵四边形BCEF是矩形,
∴EF=BC=156,
∴DE=DF+EF=423+156=579m.
答:DE的长为579m.
18.解:(1)△A′B′C′即为所求;
(2)△D′E′F′即为所求;
(3)如图,连接A′F′,
∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,
∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,
∵A′C′==、A′F′==,C′F′==,
∴A′C′2+A′F′2=5+5=10=C′F′2,
∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,
故答案为:45°.
19.解:【规律探究】
由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,
由此可得,这三个三角形数阵所有圆圈中数的总和为:
3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,
因此,12+22+32+…+n2=;
故答案为:2n+1,,;
【解决问题】
原式==×(2017×2+1)=1345,
故答案为:1345.
20.证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,
∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,
∴四边形AECD为平行四边形;
(2)作OM⊥BC于M,ON⊥CE于N,
∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,
∴OM=ON,又OM⊥BC,ON⊥CE,
∴CO平分∠BCE.
21.解:(1)∵甲的平均数是8,
∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;
把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;
故答案为:6,2;
(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;
乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;
丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;
∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;
(3)根据题意画图如下:
∵共有6种情况数,甲、乙相邻出场的有4种情况,
∴甲、乙相邻出场的概率是=.
22.解:(1)设y与x之间的函数解析式为y=kx+b,
,
得,
即y与x之间的函数表达式是y=﹣2x+200;
(2)由题意可得,
W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,
即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;
(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,
∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,
当x=70时,W取得最大值,此时W=1800,
答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.
23.解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,
∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,
∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,
②∵∠AGB=90°,点M为AB的中点,
∴MG=MA=MB,
∴∠GAM=∠AGM,
又∵∠CGE=∠AGM,∠GAM=∠CBG,
∴∠CGE=∠CBG,
又∠ECG=∠GCB,
∴△CGE∽△CBG,
∴=,即CG2=BC•CE,
由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,
由①知BE=CF,
∴BE=CG,
∴BE2=BC•CE;
(2)延长AE、DC交于点N,
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠N=∠EAB,
又∵∠CEN=∠BEA,
∴△CEN∽△BEA,
∴=,即BE•CN=AB•CE,
∵AB=BC,BE2=BC•CE,
∴CN=BE,
∵AB∥DN,
∴==,
∵AM=MB,
∴FC=CN=BE,
不妨设正方形的边长为1,BE=x,
由BE2=BC•CE可得x2=1•(1﹣x),
解得:x1=,x2=(舍),
∴=,
则tan∠CBF===.
2018年安徽省中考数学试卷: 这是一份2018年安徽省中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2016年安徽省中考数学试卷: 这是一份2016年安徽省中考数学试卷,共7页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2015年安徽省中考数学试卷: 这是一份2015年安徽省中考数学试卷,共7页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。