2019年湖北省荆门市中考数学试卷与答案
展开2019年湖北省荆门市中考数学试卷
一、选择题:本题共12小题,每小题3分,共36分.
1.﹣的倒数的平方是( )
A.2 B. C.﹣2 D.﹣
2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )
A.3.1536×106 B.3.1536×107
C.31.536×106 D.0.31536×108
3.已知实数x,y满足方程组则x2﹣2y2的值为( )
A.﹣1 B.1 C.3 D.﹣3
4.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是
( )
A.95° B.100° C.105° D.110°
5.抛物线y=﹣x2+4x﹣4与坐标轴的交点个数为( )
A.0 B.1 C.2 D.3
6.不等式组的解集为( )
A.﹣<x<0 B.﹣<x≤0 C.﹣≤x<0 D.﹣≤x≤0
7.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b=0有解的概率是( )
A. B. C. D.
8.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )
A.盈利 B.亏损
C.不盈不亏 D.与售价a有关
9.如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是( )
A.k≥0且b≤0 B.k>0且b≤0 C.k≥0且b<0 D.k>0且b<0
10.如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是
( )
A.(,﹣1) B.(1,﹣) C.(2,0) D.(,0)
11.下列运算不正确的是( )
A.xy+x﹣y﹣1=(x﹣1)(y+1)
B.x2+y2+z2+xy+yz+zx=(x+y+z)2
C.(x+y)(x2﹣xy+y2)=x3+y3
D.(x﹣y)3=x3﹣3x2y+3xy2﹣y3
12.如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是( )
A.DI=DB B.DI>DB C.DI<DB D.不确定
二、填空题:本题共5小题,每小题3分,共15分。
13.计算+|sin30°﹣π0|+= .
14.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为 .
15.如图,在平面直角坐标系中,函数y=(k>0,x>0)的图象与等边三角形OAB的边OA,AB分别交于点M,N,且OM=2MA,若AB=3,那么点N的横坐标为 .
16.如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为 .
17.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:
①abc>0,
②3a+c<0,
③a(m﹣1)+2b>0,
④a=﹣1时,存在点P使△PAB为直角三角形.
其中正确结论的序号为 .
三、解答题:共69分,解答应写出文字说明、证明过程或演算步骤。
18.(8分)先化简,再求值:()2•﹣÷,其中a=,b=.
19.(9分)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.
(1)求平行四边形ABCD的面积;
(2)求证:BD⊥BC.
20.(10分)高尔基说:“书,是人类进步的阶梯.”阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.
(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;
(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;
(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?
21.(10分)已知锐角△ABC的外接圆圆心为O,半径为R.
(1)求证:=2R;
(2)若△ABC中∠A=45°,∠B=60°,AC=,求BC的长及sinC的值.
22.(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.
23.(10分)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足m=(x为正整数),销售量n(公斤)与第x天之间的函数关系如图所示:
如果李大爷的草莓在上市销售期间每天的维护费用为80元.
(1)求销售量n与第x天之间的函数关系式;
(2)求在草莓上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)
(3)求日销售利润y的最大值及相应的x.
24.(12分)已知抛物线y=ax2+bx+c顶点(2,﹣1),经过点(0,3),且与直线y=x﹣1交于A,B两点.
(1)求抛物线的解析式;
(2)若在抛物线上恰好存在三点Q,M,N,满足S△QAB=S△MAB=S△NAB=S,求S的值;
(3)在A,B之间的抛物线弧上是否存在点P满足∠APB=90°?若存在,求点P的横坐标;若不存在,请说明理由.
(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)
2019年湖北省荆门市中考数学试卷答案
1. B.2. B.3. A.4. C.5. C.6. C.7. D.8. B.9. A.10. A.11. B.12. A.
13. 1﹣.14. 1.15. 16. +﹣.17.②③;
18.解:原式=
=
=,
当a=,b=时,
原式=.
19.解:(1)作CE⊥AB交AB的延长线于点E,如图:
设BE=x,CE=h
在Rt△CEB中:x2+h2=9①
在Rt△CEA中:(5+x)2+h2=52②
联立①②解得:x=,h=
∴平行四边形ABCD的面积=AB•h=12;
(2)作DF⊥AB,垂足为F
∴∠DFA=∠CEB=90°
∵平行四边形ABCD
∴AD=BC,AD∥BC
∴∠DAF=∠CBE
又∵∠DFA=∠CEB=90°,AD=BC
∴△ADF≌△BCE(AAS)
∴AF=BE=,BF=5﹣=,DF=CE=
在Rt△DFB中:BD2=DF2+BF2=()2+()2=16
∴BD=4
∵BC=3,DC=5
∴CD2=DB2+BC2
∴BD⊥BC.
20.解:(1)设阅读5册书的人数为x,由统计图可知:=30%,
∴x=14,
∴条形图中丢失的数据是14,阅读书册数的众数是5,中位数是5;
(2)该校1200名学生中课外阅读5册书的学生人数为1200×=420(人),
答:该校1200名学生中课外阅读5册书的学生人数是420人;
(3)设补查了y人,
根据题意得,12+6+y<8+14,
∴y<4,
∴最多补查了3人.
21.解:(1)如图1,连接AO并延长交⊙O于D,连接CD,
则∠CD=90°,∠ABC=∠ADC,
∵sin∠ABC=sin∠ADC=,
∴=2R;
(2)∵=2R,
同理可得:=2R,
∴2R==2,
∴BC=2R•sinA=2sin45°=,
如图2,过C作CE⊥AB于E,
∴BE=BC•cosB=cos60°=,AE=AC•cos45°=,
∴AB=AE+BE=,
∵AB=AR•sinC,
∴sinC==.
22.解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,
连接GF并延长交OE于点H,
∵GF∥AC,
∴△MAC∽△MFG,
∴,
即:,
∴,
∴OE=32,
答:楼的高度OE为32米.
23.解:(1)当1≤x≤10时,设n=kx+b,由图知可知
,解得
∴n=2x+10
同理得,当10<x≤30时,n=﹣1.4x+44
∴销售量n与第x天之间的函数关系式:n=
(2)∵y=mn﹣80
∴y=
整理得,y=
(3)当1≤x≤10时,
∵y=6x2+60x+70的对称轴x===﹣5
∴此时,在对称轴的右侧y随x的增大而增大
∴x=10时,y取最大值,则y10=1270
当10<x<15时
∵y=﹣4.2x2+111x+580的对称轴是x=﹣==≈13.2<13.5
∴x在x=13时,y取得最大值,此时y=1313.2
当15≤x≤30时
∵y=1.4x2﹣149x+3220的对称轴为x==>30
∴此时,在对称轴的左侧y随x的增大而减小
∴x=15时,y取最大值,y的最大值是y15=1300
综上,草莓销售第13天时,日销售利润y最大,最大值是1313.2元
24.解:(1)∵抛物线的顶点为(2,﹣1)
∴顶点式为y=a(x﹣2)2﹣1
∵抛物线经过点C(0,3)
∴4a﹣1=3
解得:a=1
∴抛物线的解析式为y=(x﹣2)2﹣1=x2﹣4x+3
(2) 解得:,
∴A(1,0),B(4,3)
∴AB=
设直线y=x﹣1与y轴交于点E,则E(0,﹣1)
∴OA=OE=1
∴∠AEO=45°
∵S△QAB=S△MAB=S△NAB=S
∴点Q、M、N到直线AB的距离相等
如图,假设点M、N在直线AB上方,点Q在直线AB下方
∴MN∥AB时,总有S△MAB=S△NAB=S
要使只有一个点Q在直线AB下方满足S△QAB=S,则Q到AB距离必须最大
过点Q作QC∥y轴交AB于点C,QD⊥AB于点D
∴∠CDQ=90°,∠DCQ=∠AEO=45°
∴△CDQ是等腰直角三角形
∴DQ=CQ
设Q(t,t2﹣4t+3)(1<t<4),则C(t,t﹣1)
∴CQ=t﹣1﹣(t2﹣4t+3)=﹣t2+5t﹣4=﹣(t﹣)2+
∴t=时,CQ最大值为
∴DQ最大值为
∴S=S△QAB=AB•DQ=
(3)存在点P满足∠APB=90°.
∵∠APB=90°,AB=3
∴AP2+BP2=AB2
设P(p,p2﹣4p+3)(1<p<4)
∴AP2=(p﹣1)2+(p2﹣4p+3)2=p4﹣8p3+23p2﹣26p+10,BP2=(p﹣4)2+(p2﹣4p+3﹣3)2=p4﹣8p3+17p2﹣8p+16
∴p4﹣8p3+23p2﹣26p+10+p4﹣8p3+17p2﹣8p+16=(3)2
整理得:p4﹣8p3+20p2﹣17p+4=0
p2(p2﹣8p+16)+4p2﹣17p+4=0
p2(p﹣4)2+(4p﹣1)(p﹣4)=0
(p﹣4)[p2(p﹣4)+(4p﹣1)]=0
∵p<4
∴p﹣4≠0
∴p2(p﹣4)+(4p﹣1)=0
展开得:p3﹣4p2+4p﹣1=0
(p3﹣1)﹣(4p2﹣4p)=0
(p﹣1)(p2+p+1)﹣4p(p﹣1)=0
(p﹣1)(p2+p+1﹣4p)=0
∵p>1
∴p﹣1≠0
∴p2+p+1﹣4p=0
解得:p1=,p2=(舍去)
∴点P横坐标为时,满足∠APB=90°.
2023年湖北省荆门市中考数学试卷: 这是一份2023年湖北省荆门市中考数学试卷,共10页。
2018年湖北省荆门市中考数学试卷与答案: 这是一份2018年湖北省荆门市中考数学试卷与答案,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年湖北省荆门市中考数学试卷及答案: 这是一份2018年湖北省荆门市中考数学试卷及答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。