2018年湖北省黄石市中考数学试卷及答案
展开2018年湖北省黄石市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列各数是无理数的是( )
A.1 B.﹣0.6 C.﹣6 D.π
2.太阳半径约696000千米,则696000千米用科学记数法可表示为( )
A.0.696×106 B.6.96×108 C.0.696×107 D.6.96×105
3.下列图形中是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
4.下列计算中,结果是a7的是( )
A.a3﹣a4 B.a3•a4 C.a3+a4 D.a3÷a4
5.如图,该几何体的俯视图是( )
A. B. C. D.
6.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是( )
A.(﹣1,6) B.(﹣9,6) C.(﹣1,2) D.(﹣9,2)
7.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A.75° B.80° C.85° D.90°
8.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为( )
A. B. C.2π D.
9.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )
A.x<﹣1或x>4 B.﹣1<x<0或x>4 C.﹣1<x<0或0<x<4 D.x<﹣1或0<x<4
10.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )
A. B. C. D.
二、填空题(本大题给共6小题,每小题3分,共18分)
11.分解因式:x3y﹣xy3= .
12.在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为
13.分式方程=1的解为
14.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是 米.(结果保留根号)
15.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为
16.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.
小光的策略是:石头、剪子、布、石头、剪子、布、……
小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)
例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表
局数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
小光实际策略 | 石头 | 剪子 | 布 | 石头 | 剪子 | 布 | 石头 | 剪子 | 布 |
小王实际策略 | 剪子 | 布 | 剪子 | 石头 | 剪子 | 剪子 | 剪子 | 石头 | 剪子 |
小光得分 | 3 | 3 | ﹣1 | 0 | 0 | ﹣1 | 3 | ﹣1 | ﹣1 |
小王得分 | ﹣1 | ﹣1 | 3 | 0 | 0 | 3 | ﹣1 | 3 | 3 |
已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为 分.
三、解答题(本大题共9小题,共72分.)
17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|
18.(7分)先化简,再求值:.其中x=sin60°.
19.(7分)解不等式组,并求出不等式组的整数解之和.
20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2
(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.
21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.
22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:
(1)本次调查中,一共调查了 位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
| A(吨) | B(吨) | 合计(吨) |
C |
|
| 240 |
D |
| x | 260 |
总计(吨) | 200 | 300 | 500 |
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).
(1)如图1,若EF∥BC,求证:
(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.
25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.
(1)求抛物线的解析式;
(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;
(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.
①求证:∠PDQ=90°;②求△PDQ面积的最小值.
2018年湖北省黄石市中考数学试卷答案
1. D.2. B.3. C.4. B.5. A.6. C.7. A.8. D.9. B.10. A.
11. xy(x+y)(x﹣y).12. 4π.13. x=0.514. 100(1+).15. .16. 90.
17.解:原式=+1++2﹣=+1++2﹣=4﹣.
18.解:原式=•=,
当x=sin60°=时,
原式==.
19.解:解不等式(x+1)≤2,得:x≤3,
解不等式≥,得:x≥0,
则不等式组的解集为0≤x≤3,
所以不等式组的整数解之和为0+1+2+3=6.
20.解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,
解得:m<1,
即实数m的取值范围是m<1;
(2)由根与系数的关系得:x1+x2=2,
即,
解得:x1=2,x2=0,
由根与系数的关系得:m=2×0=0.
21.(1)解:连接DB,如图,
∵∠BCD+∠DEB=90°,
∴∠DEB=180°﹣120°=60°,
∵BE为直径,
∴∠BDE=90°,
在Rt△BDE中,DE=BE=×2=,
BD=DE=×=3;
(2)证明:连接EA,如图,
∵BE为直径,
∴∠BAE=90°,
∵A为的中点,
∴∠ABE=45°,
∵BA=AP,
而EA⊥BA,
∴△BEP为等腰直角三角形,
∴∠PEB=90°,
∴PE⊥BE,
∴直线PE是⊙O的切线.
22.解:(1)本次调查的好友人数为6÷20%=30人,
故答案为:30;
(2)①设D类人数为a,则A类人数为5a,
根据题意,得:a+6+12+5a=30,
解得:a=2,
即A类人数为10、D类人数为2,
补全图形如下:
②扇形图中,“A”对应扇形的圆心角为360°×=120°,
故答案为:120;
③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
23.解:(1)∵D市运往B市x吨,
∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,
故答案为:x﹣60、300﹣x、260﹣x;
(2)由题意可得,
w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
∴w=10x+10200(60≤x≤260);
(3)由题意可得,
w=10x+10200﹣mx=(10﹣m)x+10200,
当0<m<10时,
x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
解得,0<m≤8,
当m>10时,
x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
解得,m≤,
∵<10,
∴m>10这种情况不符合题意,
由上可得,m的取值范围是0<m≤8.
24.解:(1)∵EF∥BC,
∴△AEF∽△ABC,
∴=,
∴=()2=•=;
(2)若EF不与BC平行,(1)中的结论仍然成立,
分别过点F、C作AB的垂线,垂足分别为N、H,
∵FN⊥AB、CH⊥AB,
∴FN∥CH,
∴△AFN∽△ACH,
∴=,
∴==;
(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,
则MN分别是BC、AC的中点,
∴MN∥AB,且MN=AB,
∴==,且S△ABM=S△ACM,
∴=,
设=a,
由(2)知:==×=,==a,
则==+=+a,
而==a,
∴+a=a,
解得:a=,
∴=×=.
25.解:(1)将点(3,1)代入解析式,得:4a=1,
解得:a=,
所以抛物线解析式为y=(x﹣1)2;
(2)由(1)知点D坐标为(1,0),
设点C的坐标为(x0,y0),(x0>1、y0>0),
则y0=(x0﹣1)2,
如图1,过点C作CF⊥x轴,
∴∠BOD=∠DFC=90°、∠DCF+∠CDF=90°,
∵∠BDC=90°,
∴∠BDO+∠CDF=90°,
∴∠BDO=∠DCF,
∴△BDO∽△DCF,
∴=,
∴==,
解得:x0=17,此时y0=64,
∴点C的坐标为(17,64).
(3)①证明:设点P的坐标为(x1,y1),点Q为(x2,y2),(其中x1<1<x2,y1>0,y2>0),
由,得:x2﹣(4k+2)x+4k﹣15=0,
∴,
∴(x1﹣1)(x2﹣1)=﹣16,
如图2,分别过点P、Q作x轴的垂线,垂足分别为M、N,
则PM=y1=(x1﹣1)2,QN=y2=(x2﹣1)2,
DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1,
∴PM•QN=DM•DN=16,
∴=,
又∠PMD=∠DNQ=90°,
∴△PMD∽△DNQ,
∴∠MPD=∠NDQ,
而∠MPD+∠MDP=90°,
∴∠MDP+∠NDQ=90°,即∠PDQ=90°;
②过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,4),
所以DG=4,
∴S△PDQ=DG•MN=×4×|x1﹣x2|=2=8,
∴当k=0时,S△PDQ取得最小值16.
2023年湖北省黄石市中考数学试卷【附答案】: 这是一份2023年湖北省黄石市中考数学试卷【附答案】,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019年湖北省黄石市中考数学试卷与答案: 这是一份2019年湖北省黄石市中考数学试卷与答案,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019年湖北省黄石市中考数学试卷及答案: 这是一份2019年湖北省黄石市中考数学试卷及答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。