终身会员
搜索
    上传资料 赚现金

    中考数学二轮复习压轴题培优专题10 三角形问题(含解析)

    立即下载
    加入资料篮
    中考数学二轮复习压轴题培优专题10 三角形问题(含解析)第1页
    中考数学二轮复习压轴题培优专题10 三角形问题(含解析)第2页
    中考数学二轮复习压轴题培优专题10 三角形问题(含解析)第3页
    还剩71页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习压轴题培优专题10 三角形问题(含解析)

    展开

    这是一份中考数学二轮复习压轴题培优专题10 三角形问题(含解析),共74页。
    
    专题10 三角形问题


    【考点1】三角形基础知识
    【例1】1.(2020·湛江)如图,在中,,,平分,则的度数是( )

    A. B. C. D.
    【答案】C
    【分析】
    在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数.
    【详解】
    ∵在中,,.
    ∴. 
    ∵平分. 
    ∴. 
    ∴. 
    故选C.
    【点睛】
    本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键.
    【变式1-1】(2020·浙江绍兴·中考真题)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为(  )
    A.4 B.5 C.6 D.7
    【答案】B
    【分析】
    利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.
    【详解】
    ①长度分别为5、3、4,能构成三角形,且最长边为5;
    ②长度分别为2、6、4,不能构成三角形;
    ③长度分别为2、7、3,不能构成三角形;
    ④长度分别为6、3、3,不能构成三角形;
    综上所述,得到三角形的最长边长为5.
    故选:B.
    【点睛】
    此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.
    【变式1-2】(2020·甘肃天水·)一个三角形的两边长分别为2和5,第三边长是方程的根,则该三角形的周长为_______.
    【答案】13
    【分析】
    先利用因式分解法解方程x2-8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.
    【详解】
    解:∵x2-8x+12=0,
    ∴,
    ∴x1=2,x2=6,
    ∵三角形的两边长分别为2和5,第三边长是方程x2-8x+12=0的根,当x=2时,2+2<5,不符合题意,
    ∴三角形的第三边长是6,
    ∴该三角形的周长为:2+5+6=13.
    故答案为:13.
    【点睛】
    本题考查了解一元二次方程的因式分解法及三角形的三边关系,熟练掌握相关性质及定理是解题的关键.
    【考点2】全等三角形的判定与性质的应用
    【例2】(2020·辽宁鞍山·中考真题)如图,在四边形中,,点E,F分别在,上,,,求证:.

    【答案】见解析
    【分析】
    连接AC,证明△ACE≌△ACF,得到∠CAE=∠CAF,再利用角平分线的性质定理得到CB=CD.
    【详解】
    解:连接AC,
    ∵AE=AF,CE=CF,AC=AC,
    ∴△ACE≌△ACF(SSS),
    ∴∠CAE=∠CAF,
    ∵∠B=∠D=90°,
    ∴CB=CD.

    【点睛】
    本题考查了全等三角形的判定和性质,角平分线的性质定理,解题的关键是连接AC,证明三角形全等.
    【变式2-1】(2020·山东东营·中考真题)如图1,在等腰三角形中,点分别在边上,连接点分别为的中点.

    (1)观察猜想
    图1中,线段的数量关系是____,的大小为_____;
    (2)探究证明
    把绕点顺时针方向旋转到如图2所示的位置,连接判断的形状,并说明理由;
    (3)拓展延伸
    把绕点在平面内自由旋转,若,请求出面积的最大值.
    【答案】(1)相等,;(2)是等边三角形,理由见解析;(3)面积的最大值为.
    【分析】
    (1)根据"点分别为的中点",可得MNBD,NPCE ,根据三角形外角和定理,等量代换求出.
    (2)先求出,得出,根据MNBD,NPCE ,和三角形外角和定理,可知MN=PN,再等量代换求出,即可求解.
    (3)根据,可知BD最大值,继而求出面积的最大值.
    【详解】
    由题意知:AB=AC,AD=AE,且点分别为的中点,
    ∴BD=CE,MNBD,NPCE,MN=BD,NP=EC
    ∴MN=NP
    又∵MNBD,NPCE,∠A=,AB=AC,
    ∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=
    根据三角形外角和定理,
    得∠ENP=∠NBP+∠NPB
    ∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,
    ∠NPB=∠C,∠MNE=∠DBE,
    ∴∠MNP=∠DBE+∠NBP+∠C
    =∠ABC+∠C =.
    是等边三角形.
    理由如下:
    如图,由旋转可得
    在ABD和ACE中



    点分别为的中点,
    是的中位线,

    同理可证且





    在中
    ∵∠MNP=,MN=PN
    是等边三角形.
    根据题意得:
    即,从而
    的面积.
    ∴面积的最大值为.
    【点睛】
    本题主要考查了三角形中点的性质、三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识;正确掌握三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识是解题的关键.
    【变式2-2】(2020·山东烟台·中考真题)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    (问题解决)
    (1)如图1,若点D在边BC上,求证:CE+CF=CD;
    (类比探究)
    (2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

    【答案】(1)见解析;(2)FC=CD+CE,见解析
    【分析】
    (1)在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;
    (2)过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.
    【详解】
    (1)证明:在CD上截取CH=CE,如图1所示:
    ∵△ABC是等边三角形,
    ∴∠ECH=60°,
    ∴△CEH是等边三角形,
    ∴EH=EC=CH,∠CEH=60°,
    ∵△DEF是等边三角形,
    ∴DE=FE,∠DEF=60°,
    ∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
    ∴∠DEH=∠FEC,
    在△DEH和△FEC中,

    ∴△DEH≌△FEC(SAS),
    ∴DH=CF,
    ∴CD=CH+DH=CE+CF,
    ∴CE+CF=CD;
    (2)解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
    ∵△ABC是等边三角形,
    ∴∠A=∠B=60°,
    过D作DG∥AB,交AC的延长线于点G,如图2所示:
    ∵GD∥AB,
    ∴∠GDC=∠B=60°,∠DGC=∠A=60°,
    ∴∠GDC=∠DGC=60°,
    ∴△GCD为等边三角形,
    ∴DG=CD=CG,∠GDC=60°,
    ∵△EDF为等边三角形,
    ∴ED=DF,∠EDF=∠GDC=60°,
    ∴∠EDG=∠FDC,
    在△EGD和△FCD中,

    ∴△EGD≌△FCD(SAS),
    ∴EG=FC,
    ∴FC=EG=CG+CE=CD+CE.

    【点睛】
    本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.
    【考点3】等腰三角形与等边三角形的判定与性质的应用
    【例3】(2020·内蒙古鄂尔多斯·中考真题)(1)(操作发现)
    如图1,在边长为1个单位长度的小正方形组成的网格中,的三个顶点均在格点上.
    ①请按要求画图:将绕点A顺时针方向旋转90°,点B的对应点为点,点C的对应点为点.连接;
    ②在①中所画图形中,=  °.
    (2)(问题解决)
    如图2,在中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
    (3)(拓展延伸)
    如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).

    【答案】(1)①见解析,②45;(2)135°;(3)
    【分析】
    (1)①根据旋转角,旋转方向画出图形即可.
    ②只要证明△ABB′是等腰直角三角形即可.
    (2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC≌△EAH(AAS)即可解决问题.
    (3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.
    【详解】
    解:(1)①如图,△AB′C′即为所求.

    ②由作图可知,△ABB′是等腰直角三角形,
    ∴∠AB′B=45°,
    故答案为45.
    (2)如图2中,过点E作EH⊥CD交CD的延长线于H.

    ∵∠C=∠BAE=∠H=90°,
    ∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,
    ∴∠B=∠EAH,
    ∵AB=AE,
    ∴△ABC≌△EAH(AAS),
    ∴BC=AH,EH=AC,
    ∵BC=CD,
    ∴CD=AH,
    ∴DH=AC=EH,
    ∴∠EDH=45°,
    ∴∠ADE=135°.
    (3)如图③中,∵AE⊥BC,BE=EC,
    ∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,

    ∵∠BAD=∠CAG,
    ∴∠BAC=∠DAG,
    ∵AB=AC,AD=AG,
    ∴∠ABC=∠ACB=∠ADG=∠AGD,
    ∴△ABC∽△ADG,
    ∵AD=kAB,
    ∴DG=kBC=2k,
    ∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
    ∴∠ADG+∠ADC=90°,
    ∴∠GDC=90°,
    ∴CG==.
    ∴BD=CG=.
    【点睛】
    本题属于几何变换综合题,考查了等边三角形的判定和性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
    【变式3-1】(2020·四川凉山·中考真题)如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.


    (1)如图1,连接AQ、CP求证:
    (2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数
    (3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
    【答案】(1)证明见解析;(2)不变;60°;(3)不变;120°.
    【分析】
    (1)根据点P、点Q以相同的速度,同时从点A、点B出发,可得BQ=AP,结合等边三角形的性质证全等即可;
    (2)由(1)中全等可得∠CPA=∠AQB,再由三角形内角和定理即可求得∠AMP的度数,再根据对顶角相等可得的度数;
    (3)先证出,可得∠Q=∠P,再由对顶角相等,进而得出∠QMC=∠CBP=120°.
    【详解】
    解:(1)证明:∵三角形ABC为等边三角形,
    ∴AB=AC,∠ABC=∠CAB=60°,
    ∵点P、点Q以相同的速度,同时从点A、点B出发,
    ∴BQ=AP,
    在△ABQ与△CAB中,

    ∴.
    (2)角度不变,60°,理由如下:

    ∴∠CPA=∠AQB,
    在△AMP中,
    ∠AMP=180°-(∠MAP+∠CPA)=180°-(∠MAP+∠AQB)=∠ABC=60°,
    ∴∠QMC=∠AMP=60°,
    故∠QMC的度数不变,度数为60°.
    (3)角度不变,120°,理由如下:
    当点P、Q在AB、BC的延长线上运动时,
    有AP=BQ,∴BP=CQ
    ∵∠ABC=∠BCA=60°,
    ∴∠CBP=∠ACQ=120°,


    ∴∠Q=∠P,
    ∵∠QCM=∠BCP,
    ∴∠QMC=∠CBP=120°,
    故∠QMC的度数不变,度数为120°.
    【点睛】
    本题考查等边三角形的性质、全等三角形的判定和性质、三角形内角和定理,灵活运用等边三角形的性质证全等是解题的关键.
    【变式3-2】(2020·吉林中考真题)如图,是等边三角形,,动点从点出发,以的速度沿向点匀速运动,过点作,交折线于点,以为边作等边三角形,使点,在异侧.设点的运动时间为,与重叠部分图形的面积为.

    (1)的长为______(用含的代数式表示).
    (2)当点落在边上时,求的值.
    (3)求关于的函数解析式,并写出自变量的取值范围.
    【答案】(1);(2);(3)当时,;当时,;当时,.
    【分析】
    (1)根据“路程速度时间”即可得;
    (2)如图(见解析),先根据等边三角形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理与性质可得,最后在中,利用直角三角形的性质列出等式求解即可得;
    (3)先求出点Q与点C重合时x的值,再分、和三种情况,然后分别利用等边三角形的性质、正切三角函数、以及三角形的面积公式求解即可得.
    【详解】

    (1)由题意得:
    故答案为:;
    (2)如图,和都是等边三角形

    ,即

    在和中,




    在中,
    ,即
    解得;

    (3)是等边三角形

    当点Q与点C重合时,
    则,解得
    结合(2)的结论,分以下三种情况:
    ①如图1,当时,重叠部分图形为
    由(2)可知,等边的边长为
    由等边三角形的性质得:PQ边上的高为

    ②如图2,当时,重叠部分图形为四边形EFPQ


    则在中,,

    在中,,即




    ③如图3,当时,重叠部分图形为
    同②可知,,
    在中,,即



    综上,当时,;当时,;当时,.

    【点睛】
    本题考查了等边三角形的性质、三角形全等的判定定理与性质、直角三角形的性质、正切三角函数等知识点,较难的是题(3),依据题意,正确分三种情况讨论是解题关键.
    【考点4】直角三角形的性质
    【例4】(2020·云南中考真题)如图,四边形是菱形,点为对角线的中点,点在的延长线上,,垂足为,点在的延长线上,,垂足为.

    (1)若,求证:四边形是菱形;
    (2)若,的面积为16,求菱形的面积.
    【答案】(1)证明见解析;(2)20.
    【分析】
    (1)由直角三角形斜边中线等于斜边一半和30度直角三角形性质性质可证,即可证明结论;
    (2)由根据三角形面积求法可求AE,设AB=x,在,由勾股定理列方程即可求出菱形边长,进而可求面积.
    【详解】
    解:∵四边形是菱形,,
    ∴,
    ∵,,
    ∴,
    又∵,
    ∴,

    同理可得:,
    ∴,即:四边形是菱形;
    (2)∵,
    ∴,
    ∴,
    在四边形是菱形中,设,则
    在中,,
    ∴,
    解得,
    ∴菱形ABCD面积=.
    【点睛】
    本题主要考查了菱形的判定和性质,涉及了直角三角形性质和勾股定理.解题关键是灵活运用直角三角形性质得出线段之间发热关系.
    【变式4-1】(2019·黑龙江中考真题)一张直角三角形纸片,,,,点为边上的任一点,沿过点的直线折叠,使直角顶点落在斜边上的点处,当是直角三角形时,则的长为_____.
    【答案】或
    【解析】
    【分析】
    依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长
    【详解】
    分两种情况:
    ①若,则, ,

    连接,则,
    ,,
    设,则,
    中,

    解得,

    ②若,则,,

    四边形是正方形,
    ,,


    设,则,,,

    解得,

    综上所述,的长为或,
    故答案为:或.
    【点睛】
    此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形
    【变式4-2】(2020·海南中考真题)如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( )

    A. B. C. D.
    【答案】B
    【分析】
    由旋转的性质可知,,进而得出为等边三角形,进而求出.
    【详解】
    解:∵
    由直角三角形中,30°角所对的直角边等于斜边的一半可知,
    ∴cm,
    又∠CAB=90°-∠ABC=90°-30°=60°,
    由旋转的性质可知:,且,
    ∴为等边三角形,
    ∴.
    故选:B.
    【点睛】
    本题考查了直角三角形中30°角所对的直角边等于斜边的一半,旋转的性质等,熟练掌握其性质是解决此类题的关键.
    【考点5】相似三角形的判定与性质的应用
    【例5】(2020·上海中考真题)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.
    (1)求证:△BEC∽△BCH;
    (2)如果BE2=AB•AE,求证:AG=DF.

    【答案】(1)证明见解析;(2)证明见解析.
    【分析】
    (1)先证明△CDF≌△CBE,进而得到∠DCF=∠BCE,再由菱形对边CDBH,得到∠H=∠DCF,进而∠BCE=∠H即可求解.
    (2) 由BE2=AB•AE,得到=,再利用AGBC,平行线分线段成比例定理得到=,再结合已知条件即可求解.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴CD=CB,∠D=∠B,CDAB.
    ∵DF=BE,
    ∴△CDF≌△CBE(SAS),
    ∴∠DCF=∠BCE.
    ∵CDBH,
    ∴∠H=∠DCF,
    ∴∠BCE=∠H.且∠B=∠B,
    ∴△BEC∽△BCH.
    (2)∵BE2=AB•AE,
    ∴=,
    ∵AGBC,
    ∴=,
    ∴=,
    ∵DF=BE,BC=AB,
    ∴BE=AG=DF,
    即AG=DF.
    【点睛】
    本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    【变式5-1】(2020·山东济南·中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
    (1)当∠CAB=45°时.
    ①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是   .线段BE与线段CF的数量关系是   ;
    ②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
    学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
    思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
    思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
    (2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.

    【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
    【分析】
    (1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
    (2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
    【详解】
    解:(1)①如图1中,连接BE,设DE交AB于T.

    ∵CA=CB,∠CAB=45°,
    ∴∠CAB=∠ABC=45°,
    ∴∠ACB=90°,
    ∵∠ADE=∠ACB=45°,∠DAE=90°,
    ∴∠ADE=∠AED=45°,
    ∴AD=AE,


    ∴AT⊥DE,DT=ET,
    ∴AB垂直平分DE,
    ∴BD=BE,
    ∵∠BCD=90°,DF=FB,
    ∴CF=BD,
    ∴CF=BE.
    故答案为:∠EAB=∠ABC,CF=BE.
    ②结论不变.
    解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.

    ∵∠ACB=90°,CA=CB,AM=BM,
    ∴CM⊥AB,CM=BM=AM,
    由①得:
    设AD=AE=y.FM=x,DM=a,
    点F是BD的中点,
    则DF=FB=a+x,
    ∵AM=BM,
    ∴y+a=a+2x,
    ∴y=2x,即AD=2FM,
    ∵AM=BM,EN=BN,
    ∴AE=2MN,MN∥AE,
    ∴MN=FM,∠BMN=∠EAB=90°,
    ∴∠CMF=∠BMN=90°,
    ∴(SAS),
    ∴CF=BN,
    ∵BE=2BN,
    ∴CF=BE.
    解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.

    ∵AD=AE,∠EAD=90°,EG=DG,
    ∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
    ∵∠CAB=45°,
    ∴∠CAG=90°,
    ∴AC⊥AG,
    ∴AC∥DE,
    ∵∠ACB=∠CBT=90°,

    ∴AC∥BT∥,
    ∵AG=BT,
    ∴DG=BT=EG,
    ∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
    ∴BD与GT互相平分,
    ∵点F是BD的中点,
    ∴BD与GT交于点F,
    ∴GF=FT,
    由旋转可得;
    是等腰直角三角形,
    ∴CF=FG=FT,
    ∴CF=BE.
    (2)结论:BE=.
    理由:如图3中,取AB的中点T,连接CT,FT.

    ∵CA=CB,
    ∴∠CAB=∠CBA=30°,∠ACB=120°,
    ∵AT=TB,
    ∴CT⊥AB,

    ∴AT=,
    ∴AB=,
    ∵DF=FB,AT=TB,
    ∴TF∥AD,AD=2FT,
    ∴∠FTB=∠CAB=30°,
    ∵∠CTB=∠DAE=90°,
    ∴∠CTF=∠BAE=60°,
    ∵∠ADE=∠ACB=60°,

    ∴AE=AD=FT,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
    【变式5-2】(2020·湖南益阳·中考真题)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:
    (1)如图1,正方形中,是上的点,将绕点旋转,使与重合,此时点的对应点在的延长线上,则四边形为“直等补”四边形,为什么?
    (2)如图2,已知四边形是“直等补”四边形,,,,点到直线的距离为.
    ①求的长.
    ②若、分别是、边上的动点,求周长的最小值.
    【答案】(1)见解析;(2)①BE=4;②周长的最小值为
    【分析】
    (1)由旋转性质证得∠F+∠BED=∠BEC+∠BED=180°,∠FBE=∠ABF+∠ABE=∠CBE+∠ABE=90°,BF=BE,进而可证得四边形为“直等补”四边形;
    (2)如图2,将△ABE绕点B顺时针旋转90°得到△CBF,可证得四边形EBFD是正方形,则有BE=FD,设BE=x,则FC=x-1,由勾股定理列方程解之即可;
    (3)如图3,延长CD到P,使DP=CD=1,延长CB到T,使TB=BC=5,则NP=NC,MT=MC,
    由△MNC的周长=MC+MN+NC=MT+MN+NP≥PT知,当T、M、N、P共线时,△MNC的周长取得最小值PT,过P作PH⊥BC交BC延长线于H,易证△BFC∽△PHC,求得CH、PH,进而求得TH,在Rt△PHT中,由勾股定理求得PT,即可求得周长的最小值.
    【详解】
    (1)如图1由旋转的性质得:∠F=∠BEC,∠ABF=∠CBE,BF=BE
    ∵∠BEC+∠BED=180°,∠CBE+∠ABE=90°,
    ∴∠F+∠BED=180°,
    ∠ABF+∠ABE=90°即∠FBE=90°,
    故满足“直等补”四边形的定义,
    ∴四边形为“直等补”四边形;
    (2)∵四边形是“直等补”四边形,AB=BC,
    ∴∠A+∠BCD=180°,∠ABC=∠D=90°,
    如图2,将△ABE绕点B顺时针旋转90°得到△CBF,
    则∠F=∠AEB=90°,∠BCF+∠BCD=180°,BF=BE
    ∴D、C、F共线,
    ∴四边形EBFD是正方形,
    ∴BE=FD,
    设BE=x,则CF=x-1,
    在Rt△BFC中,BC=5,
    由勾股定理得:,即,
    解得:x=4或x=﹣3(舍去),
    ∴BE=4
    (3)如图3,延长CD到P,使DP=CD=1,延长CB到T,使TB=BC=5,
    则NP=NC,MT=MC,
    ∴△MNC的周长=MC+MN+NC=MT+MN+NP≥PT
    当T、M、N、P共线时,△MNC的周长取得最小值PT,
    过P作PH⊥BC,交BC延长线于H,
    ∵∠F=∠PHC=90°,∠BCF=∠PCH,
    ∴△BCF∽△PCH,
    ∴,
    即,
    解得:,
    在Rt△PHT中,TH=,
    ,
    ∴周长的最小值为.

    【点睛】
    本题是一道四边形的综合题,涉及旋转的性质、正方形的判定与性质、勾股定理、解一元二次方程、相似三角形的判定与性质、垂直平分线性质、动点的最值问题等知识,解答的关键是认真审题,分析图形,寻找相关信息的联系点,借用类比等解题方法确定解题思路,进而进行推理、探究、发现和计算.
    【考点6】锐角三角函数及其应用
    【例6】(2020·山东日照·中考真题)阅读理解:
    如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=,sinB=,可得==c=2R,即:===2R,(规定sin90°=1).

    探究活动:
    如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:      (用>、=或<连接),并说明理由.
    事实上,以上结论适用于任意三角形.
    初步应用:
    在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.
    综合应用:
    如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度(结果保留小数点后一位).(≈1.732,sin15°=)
    【答案】探究活动:=,=,=;初步应用:;综合应用:古塔高度约为36.6m.
    【分析】
    探究活动:过点C作直径CD交⊙O于点D,连接BD,根据圆周角定理和正弦概念即可得出,同理得出,从而得出答案;
    初步应用:根据,得出,即可得出b的值;
    综合应用:由题意得:∠D=90°,∠A=15°,∠DBC=45°,AB=100,可知∠ACB=30°.设古塔高DC=x,则BC=,灾解直角三角形即可得出答案.
    【详解】
    解:探究活动:,
    理由如下:
    如图2,过点C作直径CD交⊙O于点D,连接BD,

    ∴∠A=∠D,∠DBC=90°,
    ∴sinA=sinD,sinD=,
    ∴,
    同理可证:,
    ∴;
    故答案为:=,=,=.
    初步应用:
    ∵,
    ∴,
    ∴.
    综合应用:
    由题意得:∠D=90°,∠A=15°,∠DBC=45°,AB=100,
    ∴∠ACB=30°.
    设古塔高DC=x,则BC=,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴古塔高度约为36.6m.
    【点睛】
    本题考查了圆周角定理、解直角三角形,添加合适的辅助线是解题的关键.
    【变式6-1】(2020·湖北荆门·中考真题)如图,海岛B在海岛A的北偏东方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.

    (1)求的度数;
    (2)求快艇的速度及C,E之间的距离.
    (参考数据:)
    【答案】(1);(2)快艇的速度为9.85海里时,C,E之间的距离为19.9海里.
    【分析】
    (1)过点B作于点D,作于点E,根据题意求出∠ABD和∠ADE的度数,即可求解;
    (2)求出BE的长度,根据解直角三角形求出BF和EF的长度,在中,求出AD、BD的长度,证出四边形为矩形,可求得快艇的速度和CE之间的距离.
    【详解】
    (1)过点B作于点D,作于点E.
    由题意得:,,
    ∵,
    ∴,

    ∴.
    (2)(海里)
    在中,,
    (海里),
    (海里),
    在中,,

    (海里),
    (海里),
    ∵,,,∴,
    ∴四边形为矩形,
    ∴,


    设快艇的速度为v海里/时,则(海里时)
    答:快艇的速度为9.85海里时,C,E之间的距离为19.9海里.
    【点睛】
    本题考查矩形的判定与性质、解直角三角形的实际应用−方位角问题,理清题中各个角的度数,熟练掌握解直角三角形的方法是解题的关键.
    【变式6-2】(2020·山东淄博·中考真题)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:
    (1)公路修建后,从A地到景区B旅游可以少走多少千米?
    (2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?

    【答案】(1)从A地到景区B旅游可以少走35千米;(2)施工队原计划每天修建0.14千米.
    【详解】
    解:(1)过点C作AB的垂线CD,垂足为D,
    在直角△BCD中,AB⊥CD,sin30°=,BC=1000千米,
    ∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),
    在直角△ACD中,AD=CD=50(千米),AC==50(千米),
    ∴AB=50+50(千米),
    ∴AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).
    答:从A地到景区B旅游可以少走35千米;
    (2)设施工队原计划每天修建x千米,
    依题意有,﹣=50,
    解得x=0.14,经检验x=0.14是原分式方程的解.
    答:施工队原计划每天修建0.14千米.
    (1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;
    (2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.

    1.(2020·广西玉林·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )

    A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形
    【答案】A
    【分析】
    先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得.
    【详解】
    由方位角的定义得:

    由题意得:



    由三角形的内角和定理得:
    是等腰直角三角形
    即A,B,C三岛组成一个等腰直角三角形
    故选:A.
    【点睛】
    本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键.
    2.(2020·湖北荆门·中考真题)中,,D为的中点,,则的面积为( )

    A. B. C. D.
    【答案】B
    【分析】
    连接AD,用等腰三角形的“三线合一”,得到的度数,及,由得,得,计算的面积即可.
    【详解】
    连接AD,如图所示:

    ∵,且D为BC中点
    ∴,且,
    ∴中,



    故选:B.
    【点睛】
    本题考查了等腰三角形的性质,及解直角三角形和三角形面积的计算,熟知以上知识是解题的关键.
    3.(2020·山东济南·中考真题)如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为(  )

    A. B.3 C.4 D.5
    【答案】D
    【分析】
    由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.
    【详解】
    解:由作法得EF垂直平分AB,
    ∴MB=MA,
    ∴BM+MD=MA+MD,
    连接MA、DA,如图,

    ∵MA+MD≥AD(当且仅当M点在AD上时取等号),
    ∴MA+MD的最小值为AD,
    ∵AB=AC,D点为BC的中点,
    ∴AD⊥BC,


    ∴BM+MD长度的最小值为5.
    故选:D.
    【点睛】
    本题考查的是线段的垂直平分线的性质,利用轴对称求线段和的最小值,三角形的面积,两点之间,线段最短,掌握以上知识是解题的关键.
    4.(2020·宁夏中考真题)如图摆放的一副学生用直角三角板,,与相交于点G,当时,的度数是( )

    A.135° B.120° C.115° D.105°
    【答案】D
    【分析】
    过点G作,则有,,又因为和都是特殊直角三角形,,可以得到,有即可得出答案.
    【详解】
    解:过点G作,有,
    ∵在和中,

    ∴,

    故的度数是105°.

    【点睛】
    本题主要考查了平行线的性质和三角形内角和定理,其中平行线的性质为:两直线平行,内错角相等;三角形内角和定理为:三角形的内角和为180°;其中正确作出辅助线是解本题的关键.
    5.(2020·山东枣庄·中考真题)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是( )

    A. B. C. D.
    【答案】B
    【分析】
    如图,作轴于.解直角三角形求出,即可.
    【详解】
    如图,作轴于.

    由题意:,,

    ,,


    故选B.
    【点睛】
    本题考查坐标与图形变化﹣旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    6.(2020·四川内江·中考真题)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知,则EF的长为( )

    A.3 B.5 C. D.
    【答案】C
    【分析】
    由矩形的性质和已知求出BD=5,根据折叠的性质得△ABE≌△MBE,设AE的长度为x,在Rt△EMD中,由勾股定理求出DE的长度,同理在Rt△DNF中求出DF的长度,在Rt△DEF中利用勾股定理即可求出EF的长度.
    【详解】
    解:∵四边形ABCD是矩形,AB=3,BC=4,
    ∴BD==5,
    设AE的长度为x,
    由折叠可得:△ABE≌△MBE,
    ∴EM=AE=x,DE=4-x,BM=AB=3,DM=5-3=2,
    在Rt△EMD中,EM2+DM2=DE2,
    ∴x2+22=(4-x)2,
    解得:x=,ED=4-=,
    设CF的长度为y,
    由折叠可得:△CBF≌△NBF,
    ∴NF=CF=y,DF=3-y,BN=BC=4,DN=5-4=1,
    在Rt△DNF中,DN2+NF2=DF2,
    ∴y2+12=(3-y)2,
    解得:x=,DF=3-=,
    在Rt△DEF中,EF=,
    故答案为:C.
    【点睛】
    本题考查矩形的性质、折叠的性质、全等三角形的判定与性质和勾股定理,运用勾股定理求出DE和DF的长度是解题的关键.
    7.(2020·江苏南通·中考真题)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为(  )

    A. B.2 C.2 D.3
    【答案】A
    【分析】
    把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.
    【详解】
    解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,

    在Rt△AHB中,
    ∵∠ABC=60°,AB=2,
    ∴BH=1,AH=,
    在Rt△AHC中,∠ACB=45°,
    ∴AC=,
    ∵点D为BC中点,
    ∴BD=CD,
    在△BFD与△CKD中,

    ∴△BFD≌△CKD(AAS),
    ∴BF=CK,
    延长AE,过点C作CN⊥AE于点N,
    可得AE+BF=AE+CK=AE+EN=AN,
    在Rt△ACN中,AN<AC,
    当直线l⊥AC时,最大值为,
    综上所述,AE+BF的最大值为.
    故选:A.
    【点睛】
    本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.
    8.(2020·四川绵阳·中考真题)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=(  )

    A.1 B.2 C.3 D.4
    【答案】B
    【分析】
    过作,交于点,可得,得到与平行,再由为中点,得到,同时得到四边形为矩形,再由角平分线定理得到,进而求出的长,得到的长.
    【详解】
    解:过作,交于点,





    为中点,

    ,即,

    四边形为矩形,

    平分,,,


    则.
    故选:.
    【点睛】
    本题考查了矩形的判定与性质,角平分线定理,以及平行线的性质,熟练掌握定理及性质是解本题的关键.
    9.(2020·四川绵阳·中考真题)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=(  )

    A.16° B.28° C.44° D.45°
    【答案】C
    【分析】
    延长,交于,根据等腰三角形的性质得出,根据平行线的性质得出,
    【详解】
    解:延长,交于,
    是等腰三角形,,





    故选:.

    【点睛】
    本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.
    10.(2020·湖北中考真题)如图,D是等边三角形外一点.若,连接,则的最大值与最小值的差为_____.

    【答案】12
    【分析】
    以CD为边向外作等边三角形CDE,连接BE,可证得△ECB≌△DCA从而得到BE=AD,再根据三角形的三边关系即可得出结论.
    【详解】
    解:如图1,以CD为边向外作等边三角形CDE,连接BE,

    ∵CE=CD,CB=CA,∠ECD=∠BCA=60°,
    ∴∠ECB=∠DCA,
    ∴△ECB≌△DCA(SAS),
    ∴BE=AD,
    ∵DE=CD=6,BD=8,
    ∴8-6

    相关试卷

    中考数学二轮复习压轴题专题10 三角形问题(含解析):

    这是一份中考数学二轮复习压轴题专题10 三角形问题(含解析),共66页。

    中考数学二轮复习压轴题培优专题18 创新型与新定义综合问题(含解析):

    这是一份中考数学二轮复习压轴题培优专题18 创新型与新定义综合问题(含解析),共84页。

    中考数学二轮复习压轴题培优专题17 二次函数的面积问题(含解析):

    这是一份中考数学二轮复习压轴题培优专题17 二次函数的面积问题(含解析),共97页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map