年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学一轮复习考点复习专题30 平行四边形【专题巩固】(含解析)

    立即下载
    加入资料篮
    中考数学一轮复习考点复习专题30  平行四边形【专题巩固】(含解析)第1页
    中考数学一轮复习考点复习专题30  平行四边形【专题巩固】(含解析)第2页
    中考数学一轮复习考点复习专题30  平行四边形【专题巩固】(含解析)第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习考点复习专题30 平行四边形【专题巩固】(含解析)

    展开

    这是一份中考数学一轮复习考点复习专题30 平行四边形【专题巩固】(含解析),共12页。试卷主要包含了已知等内容,欢迎下载使用。
    专题30  平行四边形 考点1:平行四边形的性质1.(2021·四川中考真题)下列说法正确的是(    A.平行四边形是轴对称图形 B.平行四边形的邻边相等C.平行四边形的对角线互相垂直 D.平行四边形的对角线互相平分【答案】D【分析】根据平行四边形的性质,逐一判断各个选项,即可得到答案.【详解】解:A. 平行四边形是中心对称图形不是轴对称图形,故该选项错误,B. 平行四边形的邻边不一定相等,故该选项错误,C. 平行四边形的对角线互相平分,故该选项错误,D. 平行四边形的对角线互相平分,故该选项正确.故选D2.(2021·天津中考真题)如图,的顶点ABC的坐标分别是,则顶点D的坐标是(    A B C D【答案】C【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:四边形ABCD是平行四边形,B的坐标为(-2-2),点C的坐标为(2-2)B到点C为水平向右移动4个单位长度,AD也应向右移动4个单位长度,A的坐标为(01)则点D的坐标为(41)故选:C3.(2021·四川泸州市·中考真题)如图,在平行四边形ABCD中,AE平分BAD且交BC于点ED=58°,则AEC的大小是(  A61° B109° C119° D122°【答案】C【分析】根据四边形ABCD是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE平分BAD,再根据平行线的性质得,即可得到答案.【详解】解:四边形ABCD是平行四边形AE平分BAD故选C4.(2021·四川南充市·中考真题)如图,点O对角线的交点,EF过点O分別交ADBC于点EF.下列结论成立的是(   A BC D【答案】A【分析】首先可根据平行四边形的性质推出AEO≌△CFO,从而进行分析即可.【详解】O对角线的交点,OA=OCEAO=∠CFO∵∠AOE=∠COF∴△AEO≌△CFOASA),OE=OFA选项成立;AE=CF,但不一定得出BF=CFAE不一定等于BFB选项不一定成立;,则DO=DC由题意无法明确推出此结论,C选项不一定成立;AEO≌△CFOCFE=∠AEF,但不一定得出AEF=∠DEFCFE不一定等于DEFD选项不一定成立;故选:A5.(2021·江苏扬州市·中考真题)如图,在中,点E上,且平分,若,则的面积为________【答案】50【分析】过点EEFBC,垂足为F,利用直角三角形的性质求出EF,再根据平行线的性质和角平分线的定义得到BCE=∠BEC,可得BE=BC=10,最后利用平行四边形的面积公式计算即可.【详解】解:过点EEFBC,垂足为F∵∠EBC=30°BE=10EF=BE=5四边形ABCD是平行四边形,ADBC∴∠DEC=∠BCEEC平分BED,即BEC=∠DEC∴∠BCE=∠BECBE=BC=10四边形ABCD的面积===50故答案为:506.(2021·湖南中考真题)如图,在中,对角线相交于点O,点E是边的中点.已知,则_____【答案】5【分析】直接利用平行四边形的性质结合三角形中位线定理得出EO的长.【详解】解:□ABCD中,对角线ACBD相交于点OOAC的中点,EAB的中点, EOABC的中位线,EOBC5故答案为:57.(2021·湖南中考真题)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为,若,则的度数是____【答案】40°【分析】如图,由折叠的性质可得,进而可得,然后易得四边形是平行四边形,最后根据平行四边形的性质可求解.【详解】解:如图所示:
     由折叠的性质可得四边形是平行四边形,故答案为40°8.(2021·湖南中考真题)已知:如图,四边形ABCD为平行四边形,点EACF在同一直线上,.求证:12【答案】(1)证明见解析(2)证明见解析【分析】1)利用平行四边形的性质得出ADBCAD=BC,再证明EAD=∠FCB,利用SAS证明两三角形全等即可.2)利用,得出E=∠F,再利用内错角相等两直线平行即可证明.【详解】1)证明:四边形ABCD为平行四边形ADBCAD=BC∴∠DAC=∠ACB∴∠EAD=∠FCBADECBF中, (SAS)2∴∠E=∠FEDBF 考点2:平行四边形的判定9.(2021·湖南中考真题)如图,四边形中,,将对角线向两端分别延长至点,使.连接,若.证明:四边形是平行四边形.
     【答案】见详解【分析】先证明,再证明ABCD,进而即可得到结论.【详解】证明:在中,∴∠BAE=∠DCF∴∠BAC=180°-∠BAE=180°-∠DCF=∠DCAABCD四边形是平行四边形.10.(2021·湖南中考真题)如图,在四边形中,,垂足分别为点
     1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________2)添加了条件后,证明四边形为平行四边形.【答案】(1(答案不唯一,符合题意即可);(2)见解析【分析】1)由题意可知,要使得四边形为平行四边形,则使得即可,从而添加适当条件即可;2)根据(1)的思路,利用平行四边形的定义证明即可.【详解】1)显然,直接添加,可根据定义得到结果,故答案为:(答案不唯一,符合题意即可);2)证明:四边形为平行四边形.11.(2021·浙江中考真题)如图,在中,是对角线上的两点(点在点左侧),且1)求证:四边形是平行四边形.2)当时,求的长.【答案】(1)见解析;(2【分析】1)由平行四边形的性质得到AB=CD,和已知条件一起,用于证明三角形全等,再根据一组对边平行且相等的四边形是平行四边形判定定理得出结论;2)根据平行四边形的性质得到一组对角相等,通过等量代换,得到,则相等的角正切值也相等,根据比值算出结果.【详解】1)证明中,四边形是平行四边形.2)解:BE=DF四边形是平行四边形,AE=3BE=4BE=DFAE=CFBE=DF=4AE=CF=3∴tan∠CBF=tan∠ECF=,得到EF=,或EF=(舍去),BD=4+4+=BD=12.(2021·山东)如图,在四边形ABCD中,ACBD相交于点O,且AOCO,点EBD上,满足EAODCO1)求证:四边形AECD是平行四边形;2)若ABBCCD5AC8,求四边形AECD的面积.【答案】(1)见解析;(224【分析】1)根据题意可证明,得到ODOE,从而根据对角线互相平分的四边形为平行四边形证明即可;2)根据AB=BCAO=CO,可证明BDAC 的中垂线,从而推出四边形AECD为菱形,然后根据条件求出DE的长度,即可利用菱形的面积公式求解即可.【详解】1)证明:在AOE COD中,ODOEAOCO四边形AECD 是平行四边形.2ABBCAOCOBOAC的垂直平分线,平行四边形 AECD是菱形.AC8RtCOD 中,CD5四边形 AECD 的面积为2413.(2021·四川广安市·中考真题)下图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形.【答案】见解析【分析】将点A沿任意方向平移到另一格点处,然后将点B也按相同的方法平移,最后连接点AB及其对应点即可.【详解】解:如图,四边形ABCD是平行四边形. 
     

    相关试卷

    中考数学一轮复习考点复习专题34 与圆有关的位置关系【专题巩固】(含解析):

    这是一份中考数学一轮复习考点复习专题34 与圆有关的位置关系【专题巩固】(含解析),共15页。

    中考数学一轮复习考点复习专题33 与圆有关的计算【专题巩固】(含解析):

    这是一份中考数学一轮复习考点复习专题33 与圆有关的计算【专题巩固】(含解析),共15页。试卷主要包含了米.等内容,欢迎下载使用。

    中考数学一轮复习考点复习专题32 圆的有关概念和性质【专题巩固】(含解析):

    这是一份中考数学一轮复习考点复习专题32 圆的有关概念和性质【专题巩固】(含解析),共15页。试卷主要包含了米.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map