第22讲 磁场对运动电荷的作用-2024年高考物理一轮考点复习精讲精练(全国通用)(原卷版)
展开目录
TOC \ "1-3" \h \z \u \l "_Tc134648812" 考点一 对洛伦兹力的理解 PAGEREF _Tc134648812 \h 1
\l "_Tc134648813" 考点二 带电粒子做圆周运动的分析思路 PAGEREF _Tc134648813 \h 1
\l "_Tc134648814" 考点三 带电粒子在有界磁场中的运动 PAGEREF _Tc134648814 \h 4
\l "_Tc134648815" 考点四 带电粒子运动的临界和极值问题 PAGEREF _Tc134648815 \h 7
\l "_Tc134648816" 练出高分 PAGEREF _Tc134648816 \h 10
考点一 对洛伦兹力的理解
1.洛伦兹力
磁场对运动电荷的作用力叫洛伦兹力.
2.洛伦兹力的方向
(1)判定方法
左手定则:掌心——磁感线垂直穿入掌心;
四指——指向正电荷运动的方向或负电荷运动的反方向;
大拇指——指向洛伦兹力的方向.
(2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功).
3.洛伦兹力的大小
(1)v∥B时,洛伦兹力F=0.(θ=0°或180°)
(2)v⊥B时,洛伦兹力F=qvB.(θ=90°)
(3)v=0时,洛伦兹力F=0.
(多选)(2022•湖南模拟)如图所示,光滑的水平桌面处于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B;在桌面上放有内壁光滑、长为L的试管,底部有质量为m、带电量为q的小球,试管在水平向右的拉力作用下以速度v向右做匀速直线运动(拉力与试管壁始终垂直),带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是( )
A.小球带负电,且轨迹为抛物线
B.小球运动到试管中点时,水平拉力的大小应增大至qBqvBLm
C.洛伦兹力对小球做正功
D.对小球在管中运动全过程,拉力对试管做正功,大小为qvBL
(多选)(2022•绵阳模拟)两根导线通有大小方向相同的电流,垂直穿过绝缘水平面,俯视如图所示。O点是两导线在绝缘水平面内连线的中点,a、b是连线垂直平分线上到O点距离相等的两点。一可视为质点的带正电滑块以相同大小的初速度v分别从a、b向O点运动过程中,下列说法正确的是( )
A.滑块在a、b两点受到的磁场力方向相同
B.滑块在a、b两点受到的磁场力方向相反
C.若水平面光滑,则滑块从a点出发后一定做曲线运动
D.若水平面粗糙,则滑块从b点出发后一定做减速运动
(多选)(2021•德州二模)如图所示,光滑绝缘圆弧轨道的半径为R,最低点N点左侧处于垂直纸面向外的匀强磁场中,现将一带负电的小球(可视为质点)自最低点右侧的M点静止释放,M、N两点间的距离远小于轨道半径R,小球到达最左侧的位置为P点(图中未画出),小球运动过程中始终未脱离轨道,已知重力加速度为g,下列说法中正确的是( )
A.P点比M点高
B.小球向左经过N点后,对轨道的压力立即变大
C.小球在P点和M点处对轨道的压力大小不相等
D.小球运动的周期为2πRg
如图所示,一个带正电的物体从粗糙斜面顶端滑到斜面底端时的速度为v.若加上一个垂直于纸面指向纸外的方向的磁场,则物体滑到底端时( )
A.v变大B.v变小C.v不变D.不能确定
如图所示,空间有一个范围足够大的匀强磁场,磁感应强度为B,一个质量为m、电荷量为+q的带电小圆环套在一根固定的绝缘水平细杆上,杆足够长,环与杆的动摩擦因数为μ.现给环一个向右的初速度v0,在圆环整个运动过程中,下列说法正确的是( )
A.如果磁场方向垂直纸面向里,圆环克服摩擦力做的功一定为12mv02
B.如果磁场方向垂直纸面向里,圆环克服摩擦力做的功一定为12mv02−m3g22B2q2
C.如果磁场方向垂直纸面向外,圆环克服摩擦力做的功一定为12mv02
D.如果磁场方向垂直纸面向外,圆环克服摩擦力做的功一定为12mv02−m3g22B2q2
考点二 带电粒子做圆周运动的分析思路
1.匀速圆周运动的规律
若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.
2.圆心的确定
(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图3甲所示,P为入射点,M为出射点).
图3
(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).
3.半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
4.运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为t=eq \f(θ,2π)T(或t=eq \f(θR,v)).
(2023•沙坪坝区校级模拟)如图所示,空间中分布有垂直纸面向里的匀强磁场,磁感应强度为B,有一质量为M,电荷量为q(q>0)的粒子静止在O点。某时刻,该粒子炸裂成P、Q两部分,P粒子质量为M3、电荷量为q3,Q粒子质量为2M3、电荷量为2q3。不计粒子重力,则下列说法正确的是( )
A.P粒子与Q粒子半径之比r1:r2=2:1
B.P粒子与Q粒子半径之比r1:r2=1:2
C.P粒子与Q粒子周期之比T1:T2=2:1
D.P粒子与Q粒子周期之比T1:T2=1:2
(2023•鹰潭一模)如图所示,虚线MN上方存在垂直纸面向外的匀强磁场,在直角三角形OQP中,∠PQO,∠QOP=30°。两个带电荷量数值相等的粒子a、b分别从O、P两点以垂直于MN的方向同时射入磁场,恰好在Q点相遇。不计粒子重力及粒子间相互作用力,下列说法正确的是( )
A.a带负电,b带正电
B.a、b两粒子的周期之比为1:3
C.a、b两粒子的速度之比为2:1
D.a、b两粒子的质量之比为1:3
(多选)(2023•湖南模拟)一有界匀强磁场的磁感应强度大小为B、方向垂直于纸面向外,其边界如图中虚线所示,其中射线bc足够长,∠abc=135°,其他地方磁场的范围足够大。一束质量为m、电荷量为q的带正电粒子,在纸面内从a点垂直于ab射入磁场,这些粒子具有各种速率,不计粒子重力和粒子之间的相互作用,以下说法正确的是( )
A.从ab边射出的粒子在磁场中运动的时间都相等
B.从a点入射的粒子速度越大,在磁场中运动的时间越长
C.粒子在磁场中的最长运动时间不大于πmqB
D.粒子在磁场中的最长运动时间不大于3πm2qB
(2023•邯山区校级二模)如图所示,OO′上侧有磁感应强度大小B=2.0×10﹣4T的匀强磁场,电子以v=1.6×106m/s的速度从A点与OO′成30°方向进入磁场,在垂直于磁场的平面内运动。已知电子质量m=9.1×10﹣31kg、电量q=1.6×10﹣19C。
(1)画出电子在磁场中运动轨迹;
(2)该电子离开磁场出射点离A的距离;
(3)该电子在磁场中运动的时间。
(2023•文昌模拟)如图所示,足够大的光滑绝缘水平桌面上建一直角坐标系xOy,磁感应强度为B的匀强磁场垂直桌面向下。质量为m、电荷量为q带电小球A(可视为质点)从坐标原点O以一定初速度沿着x轴正方向射出,在第一象限内运动并从坐标为(0,a)的P点向左离开第一象限。
(1)判断小球A的电性并求出初速度v0的大小;
(2)若小球A在第一象限内运动过程中与一个静止、不带电的小球B(可视为质点)发生弹性正碰,碰撞时间极短,碰后两球电量均分,碰后小球A仍沿原轨迹运动。不计两球之间的库仑力。
①求小球B的质量mB;
②若两球碰后恰好在坐标为(−34a,34a)的位置首次相遇,求小球B在第一象限初始位置的坐标。
考点三 带电粒子在有界磁场中的运动
带电粒子在有界磁场中运动的几种常见情形
1.直线边界(进出磁场具有对称性,如图7所示)
图7
2.平行边界(存在临界条件,如图8所示)
图8
3.圆形边界(沿径向射入必沿径向射出,如图9所示)
图9
4.分析带电粒子在匀强磁场中运动的关键是:
(1)画出运动轨迹;
(2)确定圆心和半径;
(3)利用洛伦兹力提供向心力列式.
(2023•云南模拟)如图所示,纸面内有一圆心为O,半径为R的圆形磁场区域,磁感应强度的大小为B,方向垂直于纸面向里。由距离O点0.4R处的P点沿着与PO连线成θ=30°的方向发射速率大小不等的电子。已知电子的质量为m,电荷量为e,不计电子的重力且不考虑电子间的相互作用。为使电子不离开圆形磁场区域,则电子的最大速率为( )
A.7eBR10mB.29eBR10m
C.21eBR40mD.(5−23)eBR5m
(2023•西城区一模)如图所示,圆形区域内有垂直纸面向里的匀强磁场,一带电粒子从圆周上的P点沿半径方向射入磁场。若粒子射入磁场时的速度大小为v1,运动轨迹为PN;若粒子射入磁场时的速度大小为v2,运动轨迹为PM。不计粒子的重力,下列判断正确的是( )
A.粒子带负电
B.速度v1大于速度v2
C.粒子以速度v1射入时,在磁场中运动时间较长
D.粒子以速度v1射入时,在磁场中受到的洛伦兹力较大
(2023•兰州模拟)如图所示,直角三角形ABC区域内存在垂直于纸面向里的匀强磁场,∠B=90°,∠C=30°。某种带电粒子(重力不计)以不同速率从BC边上D点垂直BC边射入磁场,速率为v1时粒子垂直AC边射出磁场,速率为v2时粒子从BC边射出磁场,且运动轨迹恰好与AC边相切,粒子在磁场中运动轨迹半径为r1、r2,运动时间为t1、t2。下列说法正确的是( )
A.粒子带正电B.r1:r2=2:1C.v1:v2=3:1D.t1:t2=1:4
(多选)(2023•南宁二模)地磁场对宇宙高能粒子有偏转作用,从而保护了地球的生态环境。赤道平面的地磁场简化为如图所示,O为地球球心、R为地球半径。地磁场只分布在半径为R和2R的两边界之间的圆环区域内,磁感应强度大小均为B,方向垂直纸面向里。假设均匀分布的带正电高能粒子以相同速度垂直MN沿赤道平面射向地球。已知粒子质量均为m、电荷量均为q,不计粒子的重力及相互作用力。下列说法正确的是( )
A.若粒子速率小于qBR2m,入射到磁场的粒子可以到达地面
B.若粒子速率小于qBR2m,入射到磁场的粒子均无法到达地面
C.若粒子速率为qBRm,正对着O处入射的粒子恰好可以到达地面
D.若粒子速率为3qBR2m,入射到磁场的粒子恰好有一半可以到达地面
(2022•郑州一模)竖直平面内有Ⅰ、Ⅱ两个区域的匀强磁场,方向均垂直纸面向外,两区域边界相切,如图所示。Ⅰ区域是半径为R的圆形边界磁场,磁感应强度大小为B;Ⅱ区域是边长为2R的正方形边界场,感应强度大小为2B。以圆形边界磁场最底端O为原点建立xOy直角坐标系。一质量为m,电荷量为+q的粒子,由原点O沿与x轴正方向夹角60°进入Ⅰ磁场区域,速度大小v=qBRm。粒子重力忽略不计,求:
(1)粒子运动到x轴时的位置;
(2)若Ⅱ区域内磁场反向,则粒子再次经过y轴时的位置。
考点四 带电粒子运动的临界和极值问题
1.临界问题的分析思路
物理现象从一种状态变化成另一种状态时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件称为临界条件,临界条件是解决临界问题的突破点.
临界问题的一般解题模式为:
(1)找出临界状态及临界条件;
(2)总结临界点的规律;
(3)解出临界量.
2.带电体在磁场中的临界问题的处理方法
带电体进入有界磁场区域,一般存在临界问题,处理的方法是寻找临界状态,画出临界轨迹:
(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零.
(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切.
(多选)(2023•怀仁市模拟)如图所示,在水平荧光屏MN上方分布了水平方向的匀强磁场,方向垂直纸面向里。距离荧光屏d处有一粒子源S,能够在纸面内不断地向各个方向同时发射同种带正电的粒子,不计粒子的重力,已知水平向左射出的粒子经过时间t刚好垂直打在荧光屏上,则( )
A.所有粒子均会打到荧光屏上
B.粒子从射出到打到荧光屏上的最长时间为3t
C.粒子从射出到打到荧光屏上的最短时间为23t
D.粒子能打到荧光屏上的区域长度为(3+1)d
(多选)(2023•蚌埠模拟)如图所示,a、b是直线上间距为4d的两点,也是半圆直径的两个端点,c位于ab上,且ac=d,直线上方存在着磁感应强度大小为B、垂直于半圆平面的匀强磁场(未画出),其中半圆内部没有磁场.一群比荷为k的同种带电粒子从ac之间以相同的速率垂直于ab射入圆弧区域,所有粒子都能通过b点,不计粒子间的相互作用和粒子的重力,则( )
A.粒子的速率为2dBk
B.粒子的速率为dBk
C.从c点射入的粒子在磁场中运动的时间为2π3kB
D.从c点射入的粒子在磁场中运动的时间为4π3kB
(多选)(2023•河南模拟)如图所示,匀强磁场垂直纸面向里,其边界如图所示,磁场的磁感应强度大小为B,半圆形边界的半径为R,O为半圆的圆心,ab是半圆的直径,边界上c点到a的距离为R,a、b、c、O在同一直线上,从c点沿垂直边界、垂直磁场向上射出速度大小不同的质量为m、电荷量为q的带负电的粒子,粒子均能从圆弧(含a、b点)上射出磁场,不计粒子的重力和粒子间作用,则能从圆弧边界射出的粒子( )
A.粒子速度大小范围为qBR2m≤v≤3qBR2m
B.粒子的速度越大,粒子在磁场中运动的时间越短
C.从圆弧面射出后能到达b点的粒子速度大小可能为qBRm
D.从圆弧面射出后经过O点的粒子在磁场中做圆周运动的半径为R
(多选)(2023•自贡模拟)如图所示,直角三角形ABC位于纸面内,∠C=30°,AB边长为3d,垂直于纸面向外的匀强磁场被限定在直角三角形ABC区域内。质量为m、电荷量为+q的粒子从A点以速度v沿纸面射入磁场区域,刚好从C点离开磁场。粒子重力不计,下列说法中正确的是( )
A.磁场磁感应强度的最大值为2mv3qd
B.粒子通过磁场的最长时间为πdv
C.粒子在磁场做匀速圆周运动的最小周期为3πdv
D.粒子在磁场做匀速圆周运动的最大角速度为v3d
如图所示,在第一象限某区域有一垂直于xOy平面向外、磁感应强度B1=3mv02qa的矩形匀强磁场PQMN,点Q坐标为(2a,0),其余点坐标未知。现有一质量为m、电量大小为q、不计重力的带正电粒子从y轴上的A(0,a)点以初速度v0沿x轴正方向射入第一象限、从Q点射出矩形磁场并进入第四象限。第四象限中,虚线EQ左侧存在垂直于xOy平面向里、磁感应强度B2=kmv0qa(k为大于零的未知常数)的匀强磁场。虚线EQ与x轴正方向的夹角为α(未知),在x=4a处垂直于x轴放置一块长为23a的金属挡板。金属挡板良好接地,所有打到金属挡板上的电荷均能被吸收并导入大地。求:
(1)带电粒子在B1磁场中运动的时间是多少?
(2)矩形匀强磁场PQMN的最小面积是多少?
(3)在题(2)的基础上,沿OA放置一个线状粒子源,该粒子源能均匀地沿x轴正方向源源不断地发射质量为m、电量大小为q、不计重力的带正电粒子,且单位时间内 发射的粒子数为N,发射速度大小与发射点纵坐标的关系满足v=yav0。已知所有从EQ射出磁场B2的粒子速度方向均沿x轴正方向。求接地导线上的电流大小随k值变化的函数表达式。
练出高分
一.选择题(共10小题)
1.(2023•辽宁模拟)正电子的发现,开辟了反物质领域的研究。如图所示,为安德森发现正电子的云室照片,在垂直于照片平面的匀强磁场(照片中未标出)中,高能宇宙射线穿过铅板时(粒子速度减小),有一个粒子的轨迹和电子的轨迹完全相同,但弯曲的方向反了。安德森发现这正是狄拉克预言的正电子。下列说法正确的是( )
A.粒子从上向下穿过铅板
B.粒子穿过铅板后运动周期减小
C.匀强磁场的方向垂直照片平面向里
D.粒子穿过铅板后向心加速度大小不变
2.(2023•贵阳模拟)托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,其结构如图所示。工作时,高温等离子体中的带电粒子被强匀强磁场约束在环形真空室内部,而不与器壁碰撞。已知等离子体中带电粒子的平均动能与等离子体的温度T成正比。为了约束更高温度的等离子体,需要更强的磁场,以使带电粒子在磁场中的运动半径不变。由此可判断所需的磁感应强度B正比于( )
A.TB.T2C.TD.T3
3.(2023•山西模拟)用图1所示的洛伦兹力演示仪演示带电粒子在匀强磁场中的运动时发现,有时玻璃泡中的电子束在匀强磁场中的运动轨迹呈“螺旋”状。现将这一现象简化成如图2所示的情景来讨论:在空间存在平行于x轴的匀强磁场,由坐标原点在xOy平面内以初速度v0沿与x轴正方向成α角的方向,射入磁场的电子运动轨迹为螺旋线,其轴线平行于x轴,直径为D,螺距为Δx,则下列说法中正确的是( )
A.匀强磁场的方向为沿x轴负方向
B.若仅增大匀强磁场的磁感应强度,则直径D减小,而螺距Δx不变
C.若仅增大电子入射的初速度v0,则直径D增大,而螺距Δx将减小
D.若仅增大α角(α<90°),则直径D增大,而螺距Δx将减小,且当α=90°时“轨迹”为闭合的整圆
4.(2023•新会区校级一模)带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹。如图所示,在垂直纸面向里的匀强磁场中观察到某带电粒子的轨迹,其中a和b是运动轨迹上的两点。该粒子使云室中的气体电离时,其本身的动能在减少,而其质量和电荷量不变,重力忽略不计。下列说法正确的是( )
A.粒子带正电
B.粒子先经过a点,再经过b点
C.粒子运动过程中洛伦兹力对其做负功
D.粒子运动过程中所受洛伦兹力逐渐减小
5.(2023•海东市模拟)如图所示,在第Ⅳ象限内有垂直坐标平面向外的匀强磁场,一对比荷之比为2:1的正、负带电粒子在坐标平面内以相同的速率沿与x轴成30°角的方向从坐标原点射入磁场。不计粒子受到的重力及粒子间的作用力。正、负带电粒子在磁场中运动的时间之比为( )
A.1:2B.2:1C.1:3D.1:1
6.(2023•涟源市二模)如图,虚线MN的右侧有垂直纸面向里的匀强磁场,在图示平面内两比荷相同的带正电粒子a、b从MN上的同一点沿不同方向射入匀强磁场后,又从MN上的同一点射出磁场。已知a粒子初速度的方向垂直虚线MN,粒子的重力和粒子间的相互作用忽略不计,则下列描述两粒子速度大小的关系图像正确的是( )
A.B.
C.D.
7.(2023•青羊区校级模拟)一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,ab=cd=2L,bc=de=L,一束 24He粒子在纸面内从a点垂直于ab射入磁场,这些粒子具有各种速率。不计粒子之间的相互作用。已知粒子的质量为m、电荷量为q。则粒子在磁场中运动时间最长的粒子,其运动速率为( )
A.3qBL4mB.5qBl4mC.5qBL8mD.5qBL6m
8.(2023•宜宾模拟)如图所示,L1和L2为两条平行的磁场边界线,L1上方和L2下方都是垂直纸面向里,范围足够大,且磁感应强度相同的匀强磁场,L1和L2之间无磁场;A、B两点是L2上相距一定距离的两点。带电粒子从A点以初速度v0与L2成30°角斜向右上方射出,经过偏转后正好过B点,不计重力,下列说法正确的是( )
A.该粒子一定是带正电
B.该粒子经过B点时的速度一定跟在A点时的速度相同
C.若只稍微增大该粒子在A点的初速度,它将仍可能经过B点
D.若只将该粒子在A点的初速度方向改为与L2成60°角斜向右上方,它将不可能经过B点
9.(2023•平城区校级一模)空间存在匀强磁场,磁感应强度大小为B,方向垂直于纸面,线段MN是屏与纸面的交线,长度为4L,其左侧有一粒子源S,可沿纸面内各个方向不断发射质量为m、电荷量为q、速率相同的粒子;SP⊥MN,P为垂足,如图所示,已知SP=MP=L,若MN上所有的点都能被粒子从其右侧直接打中,则粒子的速率至少为( )
A.2qBLmB.2qBLmC.5qBLmD.10qBLm
10.(2023•岳阳一模)在xOy竖直平面内存在沿y轴正方向的匀强电场和垂直于平面向外的匀强磁场,现让一个质量为m,电荷量为q的带正电小球从O点沿y轴正方向射入,已知电场强度大小为2mgq,磁感应强度大小为B,小球从O点射入的速度大小为mgqB,重力加速度为g,则小球的运动轨迹可能是( )
A.B.
C.D.
二.计算题(共2小题)
11.(2023•龙泉驿区模拟)如图所示,在纸面内有一平面直角坐标系xOy,其第一象限内有一沿y轴负方向的有界匀强电场,其右侧边界满足方程y=x2,如图中虚线所示,电场强度大小E=4V/m。第三象限内(包含x轴负半轴)存在垂直纸面向里的匀强磁场,磁感应强度大小为B=π4T。在第一象限内虚线右侧、纵坐标0≤y≤0.25m区域内有大量(速度相等)沿x轴负方向运动的带电粒子,粒子电荷量q=+8×10﹣6C,质量m=1×10﹣6kg。已知从边界上横坐标为x=0.1m以初速度v0处飞入的粒子从坐标原点飞出电场区域,不计粒子重力和粒子之间的相互作用力,求:
(1)粒子的初速度v0;
(2)所有粒子离开电场时,其速度方向与x轴负方向所成夹角的范围;
(3)粒子在磁场中运动的最短时间和出磁场的坐标。
12.(2023•浙江模拟)如图1所示,在xOy平面上的第一象限全部区域有大小为E=2mv2eR,方向竖直向上的匀强电场,有一位于第二象限的电子源持续不断地沿x轴正方向发射速率均为v的电子,形成沿y轴方向均匀分布的电子流,电子源所在位置的纵坐标分布范围为R~2R。荧光屏的上端固定于x轴上,其横坐标分布范围为0~5R,荧光屏上被电子碰撞的位置均会显示荧光。电子每次碰撞过程中机械能损失75%,碰撞前后速度方向与荧光屏的夹角相等(与竖直方向对称)。已知电子的质量为m,电荷量为e,不计电子重力,忽略电子间的相互作用。
(1)求荧光区域的横坐标的最小值;
(2)若从y=R沿x轴正方向射出的电子与荧光屏第一次碰撞的作用时间为t0,求第一次碰撞过程中荧光屏对该电子的作用力大小;
(3)求荧光区域的横坐标的最大值;
(4)现把匀强电场撤去,在第一象限全部区域加上方向垂直向里的匀强磁场B,如图2所示。若所有电子最终均静止在荧光屏上(没有离开第一象限),求B的取值范围。
2024年高考物理第一轮考点复习精讲精练(全国通用) 第22讲 磁场对运动电荷的作用(原卷版+解析): 这是一份2024年高考物理第一轮考点复习精讲精练(全国通用) 第22讲 磁场对运动电荷的作用(原卷版+解析),共55页。试卷主要包含了洛伦兹力,洛伦兹力的方向,洛伦兹力的大小,运动时间的确定等内容,欢迎下载使用。
第36讲 物理实验(一)-2024年高考物理一轮考点复习精讲精练(全国通用)(原卷版): 这是一份第36讲 物理实验(一)-2024年高考物理一轮考点复习精讲精练(全国通用)(原卷版),共26页。
第38讲 物理实验(三)-2024年高考物理一轮考点复习精讲精练(全国通用)(原卷版): 这是一份第38讲 物理实验(三)-2024年高考物理一轮考点复习精讲精练(全国通用)(原卷版),共20页。试卷主要包含了实验原理,实验器材,实验步骤,数据处理,注意事项等内容,欢迎下载使用。