初二上册数学教学计划格式《多边形及其内角和》
展开
这是一份初二上册数学教学计划格式《多边形及其内角和》,共7页。试卷主要包含了内容和内容解析,目标和目标解析,教学问题诊断分析,教学过程设计,目标检测设计等内容,欢迎下载使用。
初二上册数学教学计划格式《多边形及其内角和》 查字典数学网为大家准备了初二上册数学教学计划格式,供大家参考,希望能帮助到大家。一、内容和内容解析1.内容多边形的内角和.2.内容解析本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:得出六边形的外角和为360°如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.本节课的教学重点是:多边形的内角和与多边形的外角和公式.二、目标和目标解析1.教学目标(1)了解多边形的内角、外角等概念.(2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.2.教学目标解析(1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.(2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.三、教学问题诊断分析对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)×180°,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.本节课的教学难点:多边形的内角和定理的推导.四、教学过程设计1.复习导入我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?2.多边形的内角和如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°.类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?观察下面的图形,填空:五边形 六边形从五边形一个顶点出发可以引 条对角线,它们将五边形分成 个三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引 条对角线,它们将六边形分成 个三角形,六边形的内角和等于 ;从n边形一个顶点出发,可以引 条对角线,它们将n边形分成 个三角形,n边形的内角和等于 .n边形的内角和等于(n-2)·180°从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?分法一:如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.∴五边形的内角和为5×180°-2×180°=(5-2)×180°=540°.#FormatImgID_3# #FormatImgID_4#图1 图2分法二: 如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形.∴五边形的内角和为(5-1)×180°-180°=(5-2)×180°=540°.如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×180°.3.例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.分析:∠A、∠B、∠C、∠D有什么关系?解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°又∠A+∠C=180°∴∠B+∠D= 360°-(∠A+∠C)=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补.例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BCD=180°∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×180°=4×180°∴∠1+∠2+∠3+∠4+∠5+∠6=2×180°=360°这就是说,六边形形的外角和为360°.如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.4.课堂练习课本24页练习1、2、3题.5.课堂小结n边形的内角和是多少度?n边形的外角和是多少度?6.布置作业:教科书习题11.3第1,3,5,7,10题.五、目标检测设计1.十边形的内角和为().A.1 260° B.1 440°C.1 620° D.1 800°【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.2.一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.3.一个多边形的内角和等于1 440°,则它的边数为__________.【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.4. 如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于().A.140° B.40°C.260° D.不能确定死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。上文为大家推荐的初二上册数学教学计划格式大家还满意吗?祝大家学习进步。
相关试卷
这是一份初二数学上册辅导资料之《多边形及其内角和》,共2页。
这是一份初二上册数学实数教学计划表冀教版,共13页。试卷主要包含了教材的地位和作用,教学内容分析,教学目标和教学重点,单元教学思路及策略等内容,欢迎下载使用。
这是一份初二上册数学平方根教学计划表冀教版,共4页。试卷主要包含了情感态度与价值观,过程与方法,知识与技能等内容,欢迎下载使用。