![八年级数学教学设计:二次根式的乘法4第1页](http://m.enxinlong.com/img-preview/2/3/14759173/0-1692941823212/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级数学教学设计:二次根式的乘法4第2页](http://m.enxinlong.com/img-preview/2/3/14759173/0-1692941823247/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级数学教学设计:二次根式的乘法4第3页](http://m.enxinlong.com/img-preview/2/3/14759173/0-1692941823270/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
八年级数学教学设计:二次根式的乘法4
展开
这是一份八年级数学教学设计:二次根式的乘法4,共7页。教案主要包含了教学目标,教学重点和难点,教学方法,教学手段,教学过程,作业,板书设计等内容,欢迎下载使用。
八年级数学教学设计:二次根式的乘法4 教学建议知识结构:重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.教法建议:1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。教学设计示例二次根式的乘法(一)一、教学目标1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.2.会进行简单的二次根式的乘法运算.3.使学生能联系几何课中学习的勾股定理解决实际问题.4.使学生了解比较二次根式的大小的方法.二、教学重点和难点1.重点:会利用积的算术平方根的性质化简二次根式,会进行简单的二次根式的乘法运算.2.难点:二次根式的乘法与积的算术平方根的关系及应用.三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.四、教学手段利用投影仪.五、教学过程(一)引入新课观察下面的例子:于是可得到:又如:类似地可以得到:(二)新课积的算术平方根.由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0).积的算术平方根,等于积中各因式的算术平方根的积.要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.例1 把下面各数分解因数:(1)20;(2)42;(3)63;(4)128.说明:通过本题复习分解因数,为利用积的算术平方根公式化简二次根式打下基础.解:略.例2 化简:(1) (2)(3) (4)分析:本题需要用积的算术平方根公式进行化简,题目中的被开方数都是具体数字,学生便于理解,在讲完例2后可以总结化简的方法.解:(1)(2)(3)(4)说明:① (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0).②这个小题与本章章头图与章序言的内容有联系,解答了章序言中提出的一个问题.③ (4)小题要首先用平方差公式分解成积的形式,才可以用积的算术平方根公式进行化简.④通过例2可以看出,如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简.通过例2,我们根据算术平方根的定义,可得出: , , 等结果,于是可以总结出:一般地,有(a≥0)关于a0时, ,这种情况将在本章最后一小节专门研究.例3 化简:(1) ;(2)分析:由例3,让学生注意,在本章中,未加特别说明时,字母一般表示正数,但在实际问题中不一定非是正数不可,如第(1)小题,a可以是负数,根据学生实际情况,可适当引导学生展开小组的讨论,渗透分类讨论的思想.解:(1)(2)说明:x2+y2这个式子不能再开方了,进一步强调积的算术平方根公式的特点.例4 如右图,在△ABC中,∠C=90°,4C=10cm,BC=24cm.求AB.解:∵ AB2=AC2+BC2(cm)答:AB长26cm.(三)小结1.本节课讲了积的算术平方根的性质(a≥0,b≥0).通过分式的应用,让学生进一步总结,为什么必须有a≥0、b≥0这个条件,而没有这个条件上述性质不成立.问学生:当a0,b0, 也有意义,为什么一定要a≥0、b≥0呢?引导学生说出:若a0,b0, , 在实数范围内没有意义. 公式显然不成立.2.利用积的算术平方根的性质,化简二次根式的方法.3.结合几何课学习的勾股定理,提高学生解决实际问题的能力.(四)练习1. 化简:(1) ; (2) ;(3) ;(4) ;(5) ;(6) ;(7) ;(8)2. 计算:(1) ;(2) ;(3) ;(4)3.已知一个直角三角形的斜边c=21,一条直角边b=4,求另一条直角边a.六、作业教材P.177习题11.2; A组1、2、3、4、5.语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。七、板书设计一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
相关教案
这是一份八年级数学教学设计:众数与中位数4,共3页。教案主要包含了教材分析,教法设计,教学过程等内容,欢迎下载使用。
这是一份八年级数学教学设计:立方根4,共6页。教案主要包含了教学目标,教学重点和难点,教学方法,教学手段,教学过程,总结,作业,板书设计等内容,欢迎下载使用。
这是一份八年级数学教学设计:勾股定理4,共6页。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)