|教案下载
终身会员
搜索
    上传资料 赚现金
    八年级数学教案示例:运用公式法
    立即下载
    加入资料篮
    八年级数学教案示例:运用公式法01
    八年级数学教案示例:运用公式法02
    还剩2页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    八年级数学教案示例:运用公式法

    展开
    这是一份八年级数学教案示例:运用公式法,共4页。教案主要包含了复习,新课等内容,欢迎下载使用。

    八年级数学教案示例:运用公式法

      教学设计示例

    运用公式法――完全平方公式(1)

    教学目标

    1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

    2.理解完全平方式的意义和特点,培养学生的判断能力.

    3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

    4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

    教学重点和难点

    重点:运用完全平方式分解因式.

    难点:灵活运用完全平方公式公解因式.

    教学过程设计

    一、复习

    1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

    答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

    2.把下列各式分解因式:

    (1)ax4-ax2 (2)16m4-n4.

    解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

    (2) 16m4-n4=(4m2)2-(n2)2

    =(4m2+n2)(4m2-n2)

    =(4m2+n2)(2m+n)(2m-n).

    问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

    答:有完全平方公式.

    请写出完全平方公式.

    完全平方公式是:

    (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.

    这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

    二、新课

    和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

    a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.

    这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

    问:具备什么特征的多项是完全平方式?

    答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

    问:下列多项式是否为完全平方式?为什么?

    (1)x2+6x+9; (2)x2+xy+y2;

    (3)25x4-10x2+1; (4)16a2+1.

    答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

    x2+6x+9=(x+3)    .    (2)不是完全平方式.因为第三部分必须是2xy.

    (3)是完全平方式.25x       =(5x                                              )                                                                                                  ,1=1                                                                                                  ,10x                                                                                                  =2·5x                                                                                                  ·1,所以                                                                                                  25x                                                                                                                                            -10x                                                                                                                                            +1=(5x-1)                                                                                                                                            .                                                                                                                                            (4)不是完全平方式.因为缺第三部分.

    请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

    答:完全平方公式为:

    其中a=3x,b=y,2ab=2·(3x)·y.

    例1 把25x4+10x2+1分解因式.

    其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

    家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

    与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。例2把1-                                                                                                                                                                                      m+                                                                                                                                                                                      分解因式.                                                                                                                                                                                      问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式

    相关教案

    八年级数学教案示例:梯形的中位线: 这是一份八年级数学教案示例:梯形的中位线,共8页。教案主要包含了教学目标,教学设计,重点和难点,课时安排,教具学具准备,教学步骤,布置作业,板书设计等内容,欢迎下载使用。

    八年级数学教案示例:梯形2: 这是一份八年级数学教案示例:梯形2,共4页。教案主要包含了教学目标,教法设计,重点,课时安排,教具学具准备,师生互动活动设计,教学步骤,布置作业等内容,欢迎下载使用。

    八年级数学教案示例:立方根: 这是一份八年级数学教案示例:立方根,共5页。教案主要包含了教学目标,教学重点和难点,教学方法,教学手段,教学过程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map