所属成套资源:备战2023年中考数学解题大招复习讲义(全国通用)
模型04 一线三等角模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用)
展开
这是一份模型04 一线三等角模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型04一线三等角模型原卷版docx、模型04一线三等角模型解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
一线三等角:两个三角形中相等的两个角落在同一条直线上,另外两条边所构成的角与这两个角相等,这三个相等的角落在同一直线上,故称“一线三等角”如下图所示,一线三等角包括一线三直角、一线三锐角、一线三钝角 类型一:一线三直角模型如图,若∠1、∠2、∠3都为直角,则有△ACP∽△BPD. 类型二:一线三锐角与一线三钝角模型如图,若∠1、∠2、∠3都为锐角,则有△ACP∽△BPD.证明:∵∠DPB=180°-∠3-∠CPA,∠C=180°-∠1-∠CPA,而∠1=∠3∴∠C=∠DPB,∵∠1=∠2, ∴△ACP∽△BPD如图,若∠1、∠2、∠3都为钝角,则有△ACP∽△BPD.(证明同锐角)【解题关键】构造相似或全等三角形. 考点一:一线三等角直角模型【例1】.如图,四边形ABCD中,∠ABC=∠ACD=90°,AC=CD,BC=4cm,则△BCD的面积为 cm2. 变式训练【变式1-1】.如图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE的面积等于 平方厘米. 【变式1-2】.如图,一块含45°的三角板的一个顶点A与矩形ABCD的顶点重合,直角顶点E落在边BC上,另一顶点F恰好落在边CD的中点处,若BC=12,则AB的长为 . 【变式1-3】.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B,C两点的坐标分别是( )A.(,3),(﹣,4) B.(,3),(﹣,4) C.(,),(﹣,4) D.(,),(﹣,4) 【变式1-4】.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为( ) A. B. C. D. 考点二:一线三等角锐角或钝角模型【例2】.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于( ) A.1 B.2 C.3 D.4 变式训练【变式2-1】.如图,在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=3BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ACF与△BDE的面积之和为 . 【变式2-2】.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是 . 【变式2-3】.如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.(1)求证:=;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.如图2,若∠AFE=45°,求的值.
1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=7cm,BE=3cm,则DE的长是( )A.3cm B.3.5cm C.4cm D.4.5cm 2.如图,在矩形ABCD中,AB=4,,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若,则CE=( )A. B. C. D. 3.如图,已知,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则的值是( )A. B. C. D. 4.如图,在△ABC中,∠C=90°,∠B=30°,点D、E、F分别为边AC、AB、CB上的点,且△DEF为等边三角形,若AD=CD.则的值为( ) A. B. C. D. 5.如图,在等边三角形ABC中,AB=4,P是边AB上一点,BP=,D是边BC上一点(点D不与端点重合),作∠PDQ=60°,DQ交边AC于点Q.若CQ=a,满足条件的点D有且只有一个,则a的值为( )A. B. C.2 D.3 6.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的面积,则只需知道( )A.△ABC的面积 B.△BFG的面积 C.四边形AFGH的周长 D.△BDE的面积 7.如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为( ) A.2 B.2 C.3 D. 8.设O为坐标原点,点 A、B为抛物线y=4x2上的两个动点,且OA⊥OB.连接点 A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值为( )A. B. C. D.1 9.如图,在△ABC中,AC=3,BC=4,∠C=90°,过CB的中点D作DE⊥AD,交AB于点E,则EB的长为 . 10.如图,在平面直角坐标系中,点A(6,0),点B(0,2),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为 . 11.已知反比例函数y=,经过点E(3,4),现请你在反比例函数y=上找出一点P,使∠POE=45°,则此点P的坐标为 . 12.如图,四边形ABCD中,∠B=∠C=90°,点E是BC边上一点,△ADE是等边三角形,若,= . 13.如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的长.
14.如图所示,边长为2的等边三角形ABC中,D点在边BC上运动(不与B,C重合),点E在边AB的延长线上,点F在边AC的延长线上,AD=DE=DF.(1)若∠AED=30°,则∠ADB= °. (2)求证:△BED≌△CDF.(3)点D在BC边上从B至C的运动过程中,△BED周长变化规律为 .A.不变 B.一直变小C.先变大后变小 D.先变小后变大 15.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)当线段BE为何值时,线段AM最短,最短是多少?(3)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由. 16.如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q以相同的速度在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中,设△OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围.(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.
17.在平面直角坐标系xOy中,抛物线y=x2+(1﹣m)x﹣m(m>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)求线段AB的长(用含m的代数式表示);(2)当2≤m≤4时,抛物线过点(a,b)和(a+5,b),求a的取值范围;(3)如图,在y轴上有一点P(0,3),当∠APB=∠ABC时,求m的值.
相关试卷
这是一份模型07 将军饮马模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型07将军饮马模型原卷版docx、模型07将军饮马模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
这是一份模型45 折叠变换模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型45折叠变换模型原卷版docx、模型45折叠变换模型解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
这是一份模型30 探照灯模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型30探照灯模型原卷版docx、模型30探照灯模型解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。