【重难点讲义】浙教版数学八年级上册-第20讲 一次函数与特殊图形动点问题压轴题探究
展开第20讲 一次函数与特殊图形动点问题压轴题探究
类型一 一次函数与等腰直角三角形
【知识点睛】
当一个直角(或者一个等腰直角三角形)放在一条直线上或平面直角坐标系中时,常通过构造“K型图”全等来转化等量线段。
【类题训练】
1.已知A点坐标为A()点B在直线y=﹣x上运动,当线段AB最短时,B点坐标( )
A.(0,0) B.(,﹣) C.(1,﹣1) D.(﹣,)
2.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为( )
A.(,) B.(3,3) C.(,) D.(,)
3.如图,在平面直角坐标系中,O为坐标原点,A点坐标(6,0),B点坐标(3,﹣3),动点P从A点出发,沿x轴正方向运动,连接BP,以BP为直角边向下作等腰直角三角形BPC,∠PBC=90°,连接OC,当OC=10时,点P的坐标为( )
A.(7,0) B.(8,0) C.(9,0) D.(10,0)
4.如图,平面直角坐标系中,点A在直线y=x+上,点C在直线y=﹣x+4上,点A,C都在第一象限内,点B,D在x轴上,若△AOB是等边三角形,△BCD是以BD为底边的等腰直角三角形,则点D的坐标为 .
5.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b(k≠0)相交于点A(a,3),直线l2与y轴交于点B(0,﹣5).
(1)求直线l2的函数解析式;
(2)将△OAB沿直线l2翻折得到△CAB,使点O与点C重合,AC与x轴交于点D.求证:AC∥OB;
(3)在直线BC下方是否存在点P,使△BCP为等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.
类型二 一次函数与最值
最值常结合模型——将军饮马;
“两定一动型”将军饮马解决步骤:①对称;②连接;
“两定两动型”将军饮马解决步骤:①平移;②对称;③连接;
1.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:
①方程组的解为;
②△BCD为直角三角形;
③S△ABD=6;
④当PA+PC的值最小时,点P的坐标为(0,1).
其中正确的说法是( )
A.①②③ B.①②④ C.①③④ D.①②③④
2.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为 .
3.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是 .
类型三 一次函数与等腰三角形存在性
点在图象上,则点的坐标符合直线的解析式
“两定一动型”等腰三角形——即已知两个定点,求第三个点的坐标,使形成等腰三角形;
解决办法:“两圆一线”
“两圆”:以两个顶点为圆心,两定点组成线段长为半径作圆,圆与目标直线的交点即为所求的动点;
“一线”:两定点组成线段的中垂线与目标直线的交点即为所求的动点;(求解常需要结合勾股定理)
1.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于 .
2.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为 .
3.如图,直线AB:y=x+与坐标轴交于A、B两点,点C与点A关于y轴对称.CD⊥x轴与直线AB交于点D.
(1)求点A和点B的坐标;
(2)点P在直线CD上运动,且始终在直线AB下方,当△ABP的面积为时,求出点P的坐标;
(3)在(2)的条件下,点Q为直线CD上一动点,直接写出所有使△APQ是以AP为腰的等腰三角形的点Q的坐标.
类型四 一次函数与全等三角形
1.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为 ,点D的坐标为 .
2.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为 .
3.如图,直线y=kx+6交y轴于点A,交x轴负半轴于点B,且OA=3OB,P是直线AB上的一个动点,点C的坐标为(6,0),直线PC交y轴点于D,O是原点.
(1)求k的值;
(2)直线AB上是否存在一点P,使得△OCD与△AOB是全等的?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)当点P在射线BA上运动时,连接OP,是否存在点P,使得△OPC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
综合练习
1.已知:如图,直线y=﹣x+4分别与x轴,y轴交于A、B两点,从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )
A. B.6 C. D.
2.如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴上,点C在y轴上.OC=5,点E在边BC上,点N的坐标为(3,0).过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上的点G处,折痕为OE.
(1)点G的坐标为 ;
(2)求折痕OE所在直线的表达式;
(3)若直线l:y=mx+n平行于直线OE,且与长方形ABMN有公共点,请直接写出n的取值范围.
3.如图,一次函数y=kx+b的图象经过点A(0,5),并与直线y=x相交于点B,与x轴相交于点C,其中点B的横坐标为2.
(1)求B点的坐标和k,b的值;
(2)证明直线y=kx+b与直线y=x互相垂直;
(3)在x轴上是否存在点P使△PAB为等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.
4.直线AB:y=x+b分别与x,y轴交于A,B两点,点A的坐标为(﹣3,0),过点B的直线交x轴正半轴于点C,且OB:OC=3:1.
(1)求点B的坐标及直线BC的函数表达式;
(2)在y轴存在点P,使得三点B、C、P构成等腰三角形,请直接写出点P的坐标
;
(3)在坐标系平面内,存在点D,使以点A,B,D为顶点的三角形与△ABC全等,请你直接写出点D的坐标.
中考数学二轮复习重难点专题第06讲 动点问题(含解析): 这是一份中考数学二轮复习重难点专题第06讲 动点问题(含解析),共23页。试卷主要包含了行程问题公式,数轴工具等内容,欢迎下载使用。
【重难点讲义】浙教版数学八年级上册-第19讲 一次函数与几何图形面积考点分类探究: 这是一份【重难点讲义】浙教版数学八年级上册-第19讲 一次函数与几何图形面积考点分类探究,文件包含第19讲一次函数与几何图形面积考点分类探究原卷版docx、第19讲一次函数与几何图形面积考点分类探究解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
【重难点讲义】浙教版数学八年级上册-第12讲 特殊三角形重难点题目训练: 这是一份【重难点讲义】浙教版数学八年级上册-第12讲 特殊三角形重难点题目训练,文件包含第12讲特殊三角形重难点题目训练原卷版docx、第12讲特殊三角形重难点题目训练解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。