|教案下载
搜索
    上传资料 赚现金
    人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计
    立即下载
    加入资料篮
    人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计01
    人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计02
    人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计

    展开
    这是一份人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计,共6页。教案主要包含了教学目标,核心素养,教学重点,教学难点,课前导读,新课讲授,尝试与发现,思考与辨析等内容,欢迎下载使用。

       第一章  集合与常用逻辑用语

    1.2 常用逻辑用语

    1.2.3 充分条件、必要条件 教学设计

    教学分析

     

    常用逻辑用语是数学语言的重要组成部分,是数学表达和交流的工具,是逻辑思维的基本语言。本单元的学习,可以帮助学生使用常用逻辑用语表达数学对象,进行数学推理,体会常用逻辑用语在表述数学内容和论证数学结论中的作用,提升交流的严谨性与准确性。

    教学目标与核心素养

    教学目标

    1理解充分条件和必要条件的概念.

    2掌握充分条件和必要条件的判断方法.

    3理解充分必要条件的概念.

    4能利用命题之间的关系判定充要条件或进行充要性的证明

    核心素养

    1数学抽象:在课前导读中抽象出充分、必要的概念.

    2逻辑推理: 判定推出与不推出,推理充分条件与必要条件的基本形式和规则.

    3直观想象:借助坐标轴和几何图形来判定充分条件与必要条件.

    4数学运算:掌握pq运算,正确判断推出与不推出的关系.

     

    教学重难点

     

    教学重点

    1掌握充分条件和必要条件的概念和判断方法.

    2掌握充要条件的概念和判断方法.

    教学难点

    1能利用命题之间的关系判定充要条件或进行充要性的证明

    课前准备

    通过课前导读、身边的例子来了解充分、必要的概念。

    教学过程

     

    【课前导读】

    充分”“必要是我们日常生活中经常使用的词语,你知道下列语句中的这两个词分别表达的是什么意思吗?

    1不断出现的数据让禁放派理由更加充分(《中国青年报》2014123日);

    2做到了目标明确、数据翔实、理由充分、逻辑严密(《人民日报》201434日);

    3积极乐观的人,相信办法总比问题多,内心充满希望,当然,他们更懂得去寻求必要的帮助,给自己创造更多的机会(《中国青年报》2015622日);

    4文学不只是知识,同时也是一种能力,写作对于一个文学系的学生而言是一种必要的素质(《人民日报》2015728日).

    本小节我们要学习数学中的充分条件和必要条件。

    一、充分条件、必要条件

    【新课讲授】

    我们已经接触过很多形如如果p,那么q的命题,例如:

    1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;

    2)在直角三角形中,如果一个锐角等于30°,那么这个锐角所对的直边等于斜边的一半;

    3)如果x>2,那么x>3

    4)如果a>bc>0,那么ac>bc.

    如果p,那么q形式的命题中,p称为命题的条件,q称为命题的结论.如果p,那么q”是一个真命题,则称由p可以推出q,记作

    pq

    “p推出q”;否则,称由p推不出q,记作pq,读作“p推不出q”.

    例如,上述例子中,(1)是一个真命题,即两条直线都与第三条直线平行可以推出这两条直线也互相平行,这也可记作

     两条直线都与第三条直线平行这两条直线也互相平行;

    而(3)是一个假命题,即x>2推不出x>3,这也可记作

    x>2x>3.

     

    如果p,那么q也常常记为如果p,则q”p,则q

    【尝试与发现】

     

    pq时,我们称pq的充分条件,qp的必要条件;当pq时,我们称p不是q的充分条件,q不是p的必要条件.事实上,前述课前导读中的充分”“必要与这里的充分条件、必要条件表示的是类似的意思.

    因此, 如果p,那么q”是真命题,

    pq

    pq的充分条件,

    qp的必要条件,

    这四种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.

    例如,因为如果x=-y,则x2=y2是真命题,所以

    x=-yx2=y2

    x=-yx2=y2的充分条件,

    x2=y2x=-y的必要条件.

    再例如,因为命题A∩B≠,则A≠是真命题,所以

    A∩B≠      A≠

    A∩B≠A≠         条件

    A≠A∩B≠         条件

    【思考与辨析】

     

     

    【典型例题】

    1 判断下列各题中,p是否是q的充分条件,q是否是p的必要条件:

    1p:xZq:xR

    2p:x是矩形q:x是正方形

    1)因为整数都是有理数,从而一定也是实数,即pq因此pq的充分条件,qp的必要条件。

    2)因为矩形不一定是正方形,即pq因此p不是q的充分条件,q不是p的必要条件。

    充分条件与必要条件也可用集合的知识来理解。

    A={x|x≥0}B={x|x>-1}则不难看出,AB的子集(如图所示),即AB.

     

     

     

     

    另一方面,如果x≥0,那么x>-1是真命题,也就是说

    x≥0x>-1

    x≥0x>-1的充分条件,

    x>-1x≥0的必要条件。

    一般地,如果A={x|p(x)}B={x|q(x)}AB.(如图所示),那么p(x)q(x),因此也就有p(x)q(x)的充分条件,q(x)p(x)的必要条件.

     

     

     

     

     

    例如,设A={x|x是在北京市出生的人}B={x|x是在中国出生的人},则AB,所以“x是在北京市出生的人可以推出“x是在中国出生的人”.

    充分条件、必要条件还与数学中的判定定理、性质定理有关。

    例如,如果一个函数是正比例函数,那么这个函数是一次函数可以看成一个判定定理.这指的是,只要函数是正比例函数,那么就可以判定这个函数是一次函数.不难看出,判定定理实际上是给出了一个充分条件,上例中,函数是正比例函数函数是一次函数的充分条件。

    矩形的对角线相等可以看成一个性质定理.这指的是,只要一个四边形是矩形,那么这个四边形的对角线一定相等.不难看出,性质定理实际上给出了一个必要条件,上例中,四边形的对角线相等四边形是矩形的必要条件。

    2 说明下述命题是否可以看成判定定理或性质定理,如果可以,说出其中涉及的充分条件或必要条件:

    1)形如y=ax2a是非零常数)的函数是二次函数;

    2)菱形的对角线互相垂直。

    解(1)这可以看成一个判定定理,因此形如y=ax2a是非零常数)的函数这个函数是二次函数       条件

    2这可以看成菱形的一个性质定理,因此四边形对角线互相垂直四边形是菱形            件。

     

     

     

     

     

     

    【扩展阅读】

     

     

     

     

     

     

     

     

     

     

     

     

     

    二、充要条件

     

    【新课讲授】

     

    二、充要条件

    我们已经知道,因为x>3x>2,所以

    x>3x>2         条件,

    又因为x>2x>3,所以

    x>3不是x>2的必要条件,

    把这两方面综合起来,可以说成

    x>3x>2的充分不必要条件.

    一般地,如果pqqp,则称pq的充分不必要条件,

    【尝试与发现】

     

     

    如果pqqp,则称pq的必要不充分条件.例如,x(x-1)=0x=0的必要不充分条件,

    如果pqqp,则称pq的充分必要条件(简称为充要条件),

    记作

    pq

    此时,也读作“pq等价”“p当且仅当q”.

    当然,pq的充要条件时,q也是p的充要条件.

    例如,当x≥0时,有意义;当有意义时,x≥0.因此“x≥0”有意义的充要条件,即

    x≥0有意义,

    也可以说成“x≥0有意义等价”“x≥0当且仅当有意义.

    3 ABC中,判断B=C是否是AC=AB的充要条件.

      因为在三角形中,等角对等边,所以

    B=CAC=AB

    又因为在三角形中,等边对等角,所以

    AC=ABB=C.

    从而B=CAC=AB,因此ABC中,B=CAC=AB的充要条件。

    从集合的观点来看,如果A={x|p(x)}B={x|q(x)},且A=B,则p(x)q(x),因此也就有p(x)q(x)的充要条件。

    例如,当A={x|x≤0}B={x|lxl=-x}时,不难看出A=B,因此x≤0lxl=-x,也就是说x≤0|x|=-x        条件,x≤0lxl=-x等价,x≤0当且仅当lxl=-x.

    另外,充要条件与数学中的定义有关.例如,三条边都相等的三角形称为等边三角形是等边三角形的定义,这就意味着,只要三角形的三条边都相等,那么这个三角形一定是等边三角形;反之,如果一个三角形是等边三角形,那么这个三角形的三条边都相等。不难看出,一个数学对象的定义实际上给出了这个对象的一个充要条件,上例中,三角形的三条边都相等三角形是等边三角形的充要条件。

    注意到三角形的三个角相等也是三角形是等边三角形的一个充要条件,因此我们也可以将等边三角形定义为:三个角都相等的三角形称为等边三角形。

    需要补充的是,除了上面提到的充分不必要条件、必要不充分条件、充要条件之外,还存在p既不是q的充分条件,也不是q的必要条件的情形,例如,当p:x>0q:x2>2时就是如此.

    【思考与辨析】

     

     

    教学反思

          本节内容简单,但学生容易混淆,需要梳理辨析充分条件、必要条件的数学定义即可.

     

    相关教案

    人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第1课时)教学设计: 这是一份人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第1课时)教学设计,共5页。教案主要包含了设计意图,师生活动等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 常用逻辑用语1.2.3 充分条件、必要条件第1课时教学设计: 这是一份高中数学人教B版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 常用逻辑用语1.2.3 充分条件、必要条件第1课时教学设计,共5页。教案主要包含了复习回顾,讲授新课,课堂练习,课时小结等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 常用逻辑用语1.2.3 充分条件、必要条件教学设计: 这是一份高中数学人教B版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 常用逻辑用语1.2.3 充分条件、必要条件教学设计,共8页。教案主要包含了教学目标,核心素养,教学重点,教学难点,新课导入,探究新知,尝试与发现,巩固练习等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教B版(2019)高中数学 必修第一册1.2.3 充分条件、必要条件(第2课时)教学设计
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map