高考数学真题分项汇编三年(2021-2023)(全国通用)专题08+平面解析几何(解答题)
展开专题08 平面解析几何(解答题)
知识点目录
知识点1:弦长、周长问题
知识点2:斜率问题
知识点3:面积及面积比问题
知识点4:定直线问题
知识点5:向量问题
知识点6:共线与平行问题
知识点7:相切问题
知识点8:定点定值问题
近三年高考真题
知识点1:弦长、周长问题
1.(2023•新高考Ⅰ)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
2.(2023•上海)已知抛物线,在上有一点位于第一象限,设的纵坐标为.
(1)若到抛物线准线的距离为3,求的值;
(2)当时,若轴上存在一点,使的中点在抛物线上,求到直线的距离;
(3)直线,抛物线上有一异于点的动点,在直线上的投影为点,直线与直线的交点为.若在的位置变化过程中,恒成立,求的取值范围.
3.(2022•上海)设有椭圆方程,直线,下端点为,在上,左、右焦点分别为,、,.
(1),中点在轴上,求点的坐标;
(2)直线与轴交于,直线经过右焦点,在中有一内角余弦值为,求;
(3)在椭圆上存在一点到距离为,使,随的变化,求的最小值.
4.(2022•浙江)如图,已知椭圆.设,是椭圆上异于的两点,且点在线段上,直线,分别交直线于,两点.
(Ⅰ)求点到椭圆上点的距离的最大值;
(Ⅱ)求的最小值.
5.(2022•北京)已知椭圆的一个顶点为,焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作斜率为的直线与椭圆交于不同的两点,,直线,分别与轴交于点,.当时,求的值.
6.(2022•新高考Ⅱ)已知双曲线的右焦点为,渐近线方程为.
(1)求的方程;
(2)过的直线与的两条渐近线分别交于,两点,点,,,在上,且,.过且斜率为的直线与过且斜率为的直线交于点.从下面①②③中选取两个作为条件,证明另外一个成立.
①在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
7.(2022•上海)已知椭圆,、两点分别为的左顶点、下顶点,、两点均在直线上,且在第一象限.
(1)设是椭圆的右焦点,且,求的标准方程;
(2)若、两点纵坐标分别为2、1,请判断直线与直线的交点是否在椭圆上,并说明理由;
(3)设直线、分别交椭圆于点、点,若、关于原点对称,求的最小值.
8.(2021•北京)已知椭圆的一个顶点,以椭圆的四个顶点围成的四边形面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作斜率为的直线与椭圆交于不同的两点,,直线、分别与直线交于点、,当时,求的取值范围.
9.(2021•浙江)如图,已知是抛物线的焦点,是抛物线的准线与轴的交点,且.
(Ⅰ)求抛物线的方程:
(Ⅱ)设过点的直线交抛物线于,两点,若斜率为2的直线与直线,,,轴依次交于点,,,,且满足,求直线在轴上截距的取值范围.
知识点2:斜率问题
10.(2021•新高考Ⅰ)在平面直角坐标系中,已知点,,,,点满足.记的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于,两点和,两点,且,求直线的斜率与直线的斜率之和.
11.(2021•乙卷(文))已知抛物线的焦点到准线的距离为2.
(1)求的方程;
(2)已知为坐标原点,点在上,点满足,求直线斜率的最大值.
12.(2022•甲卷(文))设抛物线的焦点为,点,过的直线交于,两点.当直线垂直于轴时,.
(1)求的方程;
(2)设直线,与的另一个交点分别为,,记直线,的倾斜角分别为,.当取得最大值时,求直线的方程.
知识点3:面积及面积比问题
13.(2023•甲卷(文))已知直线与抛物线交于,两点,.
(1)求;
(2)设为的焦点,,为上两点,且,求面积的最小值.
14.(2023•甲卷(理))设抛物线,直线与交于,两点,且.
(1)求的值;
(2)为的焦点,,为抛物线上的两点,且,求面积的最小值.
15.(2023•天津)设椭圆的左、右顶点分别为,,右焦点为,已知,.
(Ⅰ)求椭圆方程及其离心率;
(Ⅱ)已知点是椭圆上一动点(不与顶点重合),直线交轴于点,若△的面积是△面积的二倍,求直线的方程.
16.(2022•天津)椭圆的右焦点为、右顶点为,上顶点为,且满足.
(1)求椭圆的离心率;
(2)直线与椭圆有唯一公共点,与轴相交于异于.记为坐标原点,若,且的面积为,求椭圆的标准方程.
17.(2022•新高考Ⅰ)已知点在双曲线上,直线交于,两点,直线,的斜率之和为0.
(1)求的斜率;
(2)若,求的面积.
知识点4:定直线问题
18.(2023•新高考Ⅱ)已知双曲线中心为坐标原点,左焦点为,,离心率为.
(1)求的方程;
(2)记的左、右顶点分别为,,过点的直线与的左支交于,两点,在第二象限,直线与交于,证明在定直线上.
知识点5:向量问题
19.(2021•上海)已知,,是其左、右焦点,直线过点,,交椭圆于,两点,且,在轴上方,点在线段上.
(1)若是上顶点,,求的值;
(2)若,且原点到直线的距离为,求直线的方程;
(3)证明:对于任意,使得的直线有且仅有一条.
20.(2021•甲卷(文))在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)将的极坐标方程化为直角坐标方程;
(2)设点的直角坐标为,为上的动点,点满足,写出的轨迹的参数方程,并判断与是否有公共点.
知识点6:共线与平行问题
21.(2023•北京)已知椭圆的离心率为,、分别为的上、下顶点,、分别为的左、右顶点,.
(1)求的方程;
(2)点为第一象限内上的一个动点,直线与直线交于点,直线与直线交于点.求证:.
22.(2021•新高考Ⅱ)已知椭圆的方程为,右焦点为,,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,是椭圆上的两点,直线与曲线相切.证明:,,三点共线的充要条件是.
23.(2021•天津)已知椭圆的右焦点为,上顶点为,离心率为,且.
(1)求椭圆的标准方程;
(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
知识点7:相切问题
24.(2021•甲卷(文))抛物线的顶点为坐标原点,焦点在轴上,直线交于,两点,且.已知点,且与相切.
(1)求,的方程;
(2)设,,是上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
知识点8:定点定值问题
25.(2023•乙卷(文))已知椭圆的离心率为,点在上.
(1)求的方程;
(2)过点的直线交于点,两点,直线,与轴的交点分别为,,证明:线段的中点为定点.
26.(2022•乙卷(文))已知椭圆的中心为坐标原点,对称轴为轴、轴,且过,,两点.
(1)求的方程;
(2)设过点的直线交于,两点,过且平行于轴的直线与线段交于点,点满足.证明:直线过定点.
专题08 平面解析几何(解答题)(学生版)2021-2023年高考数学真题分类汇编(全国通用): 这是一份专题08 平面解析几何(解答题)(学生版)2021-2023年高考数学真题分类汇编(全国通用),共10页。试卷主要包含了如图,已知椭圆,已知椭圆的一个顶点为,焦距为等内容,欢迎下载使用。
高考数学真题分项汇编三年(2021-2023)(全国通用)专题11+平面向量: 这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题11+平面向量,文件包含专题11平面向量全国通用解析版docx、专题11平面向量全国通用原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
高考数学真题分项汇编三年(2021-2023)(全国通用)专题07+平面解析几何(选择题、填空题): 这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题07+平面解析几何(选择题、填空题),文件包含专题07平面解析几何选择题填空题全国通用解析版docx、专题07平面解析几何选择题填空题全国通用原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。