所属成套资源:中考数学二轮精品专题复习
- 中考数学二轮精品专题复习 分式方程(填空题) 试卷 1 次下载
- 中考数学二轮精品专题复习 分式方程(选择题) 试卷 1 次下载
- 中考数学二轮精品专题复习 概率(填空题) 试卷 1 次下载
- 中考数学二轮精品专题复习 概率(选择题) 试卷 1 次下载
- 中考数学二轮精品专题复习 函数基础知识 试卷 1 次下载
中考数学二轮精品专题复习 概率(解答题)
展开
这是一份中考数学二轮精品专题复习 概率(解答题),共72页。试卷主要包含了的方法,求某同学获一等奖的概率等内容,欢迎下载使用。
2023年中考数学真题知识点汇编之《概率(解答题)》
一.解答题(共36小题)
1.(2023•广安)“双减”政策实施后,某校为丰富学生的课余生活,开设了A书法,B绘画,C舞蹈,D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.
(1)本次抽取调查学生共有 人,估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为 人;
(2)请将以上两个统计图补充完整;
(3)甲、乙两名学生要选择参加兴趣班,若他们每人从A,B,C,D四类兴趣班中随机选取一类,请用画树状图或列表法,求两人恰好选择同一类的概率.
2.(2023•徐州)甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?
3.(2023•辽宁)6月5日是世界环境日,为提高学生的环保意识,某校举行了环保知识竞赛,从全校学生的成绩中随机抽取了部分学生的成绩进行分析,把结果划分为4个等级:A(优秀);B(良好);C(中);D(合格).并将统计结果绘制成如图两幅统计图.
请根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的学生共有 名;
(2)补全条形统计图;
(3)该校共有1200名学生,请你估计本次竞赛获得B等级的学生有多少名?
(4)在这次竞赛中,九年一班共有4人获得了优秀,4人中有两名男同学,两名女同学,班主任决定从这4人中随机选出2人在班级为其他同学做培训,请你用列表法或画树状图法,求所选2人恰好是一男一女的概率.
4.(2023•湘潭)为落实“双减”政策要求,丰富学生课余生活,某校七年级根据学生需求,组建了四个社团供学生选择:A(合唱社团)、B(硬笔书法社团)、C(街舞社团)、D(面点社团).学生从中任意选择两个社团参加活动.
(1)小明对这4个社团都很感兴趣,如果他随机选择两个社团,请列举出所有的可能结果;
(2)小宇和小江在选择过程中,首先都选了社团C(街舞社团),第二个社团他俩决定随机选择,请用列表法或树状图求他俩选到相同社团的概率.
5.(2023•张家界)2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.
根据以上信息,解答下列问题:
(1)本次抽取的学生人数为 人,扇形统计图中m的值为 ;
(2)补全条形统计图;
(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?
(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.
6.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).
请根据统计图中的信息解答下列问题:
(1)在本次调查中,一共抽取了 名学生,在扇形统计图中A所对应圆心角的度数为 ;
(2)将上面的条形统计图补充完整;
(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;
(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.
7.(2023•长春)班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则如下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后放回,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.
8.(2023•吉林)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆,某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片,请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.
9.(2023•无锡)为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.
(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是 .
(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.
10.(2023•遂宁)为贯彻落实党的二十大关于深化全民阅读活动的重要部署,教育部印发了《全国青少年学生读书行动实施方案》,于是某中学开展了以“书香润校园,好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况,采用随机抽样的方式获取了若干名学生的周末阅读时间数据,整理后得到下列不完整的图表:
类别
A类
B类
C类
D类
阅读时长t(小时)
0≤t<1
1≤t<2
2≤t<3
t≥3
频数
8
m
n
4
请根据图表中提供的信息解答下面的问题:
(1)此次调查共抽取了 名学生,m= ,n= ;
(2)扇形统计图中,B类所对应的扇形的圆心角是 度;
(3)已知在D类的4名学生中有两名男生和两名女生,若从中随机抽取两人参加阅读分享活动,请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.
11.(2023•鄂州)2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,鄂州市某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.
(1)九(1)班共有 名学生;并补全图1折线统计图;
(2)请阅读图2,求出D所对应的扇形圆心角的度数;
(3)若小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.
学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.
等级
劳动积分
人数
A
x≥90
4
B
80≤x<90
m
C
70≤x<80
20
D
60≤x<70
8
E
x<60
3
请根据图表信息,解答下列问题:
(1)统计表中m= ,C等级对应扇形的圆心角的度数为 ;
(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;
(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.
13.(2023•福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
(1)求该顾客首次摸球中奖的概率;
(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.
14.(2023•荆州)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).
组别
身高分组
人数
A
155≤x<160
3
B
160≤x<165
2
C
165≤x<170
m
D
170≤x<175
5
E
175≤x<180
4
根据以上信息回答:
(1)这次被调查身高的志愿者有 人,表中的m= ,扇形统计图中α的度数是 ;
(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.
15.(2023•岳阳)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A包粽子,B腌咸蛋,C酿甜酒,D摘艾叶,每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:
(1)本次共调查了 名学生;
(2)请补全条形统计图;
(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A和C两个社团的概率.
16.(2023•随州)中学生心理健康受到社会的广泛关注,某校开展心理健康教育专题讲座,就学生对心理健康知识的了解程度,采用随机抽样调查的方式,根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有 人,条形统计图中m的值为 ,扇形统计图中“非常了解”部分所对应扇形的圆心角的度数为 ;
(2)若该校共有学生800人,根据上述调查结果,可以估计出该校学生中对心理健康知识“不了解”的总人数为 人;
(3)若某班要从对心理健康知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加心理健康知识竞赛,请用列表或画树状图的方法,求恰好抽到2名女生的概率.
17.(2023•广元)为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:
(1)求第四小组的频数,并补全频数分布直方图;
(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;
(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.
18.(2023•陕西)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.
(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为 ;
(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.
19.(2023•扬州)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从A、B、C三个景点中随机选择一个景点游览.
(1)甲选择A景点的概率为 ;
(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择C景点的概率.
20.(2023•乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.
家务类型
洗衣
拖地
煮饭
刷碗
人数(人)
10
12
10
m
根据上面图表信息,回答下列问题:
(1)m= ;
(2)在扇形统计图中,“拖地”所占的圆心角度数为 ;
(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.
21.(2023•江西)为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.
(1)“甲、乙同学都被选为宣传员”是 事件;(填“必然”、“不可能”或“随机”)
(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.
22.(2023•宜昌)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A文学类,B科幻类,C漫画类,D数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:
书籍类别
学生人数
A文学类
24
B科幻类
m
C漫画类
16
D数理类
8
(1)本次抽查的学生人数是 ,统计表中的m= ;
(2)在扇形统计图中,“C漫画类”对应的圆心角的度数是 ;
(3)若该校共有1200名学生,请你估计该校学生选择“D数理类”书籍的学生人数;
(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.
23.(2023•内江)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团.该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)此次调查一共随机抽取了 名学生,补全条形统计图(要求在条形图上方注明人数);
(2)扇形统计图中圆心角α= 度;
(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.
24.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.
请根据统计图解答下列问题:
(1)本次调查中,一共调查了 名学生,其中选择“C家用器具使用与维护”的女生有 名,“D烹饪与营养”的男生有 名;
(2)补全上面的条形统计图和扇形统计图;
(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.
25.(2023•湖北)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的m= ,n= ,文学类书籍对应扇形圆心角等于 度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
26.(2023•烟台)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A,B,C,D,E五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.
(1)请将条形统计图补充完整;
(2)在扇形统计图中,D所在的扇形的圆心角的度数为 ;若该市有1000名中学生参加本次活动,则选择A大学的大约有 人;
(3)甲、乙两位同学计划从A,B,C三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.
27.(2023•苏州)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.
(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为 ;
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
28.(2023•巴中)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.
等级
周平均读书时间t(单位;小时)
人数
A
0≤t<1
4
B
1≤t<2
a
C
2≤t<3
20
D
3≤t<4
15
E
t≥4
5
(1)求统计图表中a= ,m= .
(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为 .
(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.
29.(2023•宜宾)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理,绘制如图所示的不完整统计图.根据图表信息回答以下问题:
类别
劳动时间x
A
0≤x<1
B
1≤x<2
C
2≤x<3
D
3≤x<4
E
4≤x
(1)九年级1班的学生共有 人,补全条形统计图;
(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
(3)已知E类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.
30.(2023•连云港)如图,有4张分别印有Q版西游图案的卡片:A唐僧、B孙悟空、C猪八戒、D沙悟净.
现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率:
(1)第一次取出的卡片图案为“B孙悟空”的概率为 ;
(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A唐僧”的概率.
31.(2023•金昌)为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.
(1)求小亮从中随机抽到卡片A的概率;
(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.
32.(2023•云南)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.
(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;
(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.
33.(2023•眉山)某校为落实“双减”工作,推行“五育并举”,计划成立五个兴趣活动小组(每个学生只能参加一个活动小组):A.音乐,B.美术,C.体育,D.阅读,E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图:
根据图中信息,完成下列问题:
(1)①补全条形统计图(要求在条形图上方注明人数);
②扇形统计图中的圆心角α的度数为 .
(2)若该校有3600名学生,估计该校参加E组(人工智能)的学生人数;
(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四位同学中随机抽取两人参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.
34.(2023•凉山州)2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海泸山风景区(以下分别用A、B、C、D表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的游客有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若某游客随机选择A、B、C、D四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A的概率.
35.(2023•南充)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).
(1)已知该班有15人参加A类活动,则参加C类活动有多少人?
(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.
36.(2023•达州)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.
(1)该班共有学生 人,并把条形统计图补充完整;
(2)扇形统计图中,m= ,n= ,参加剪纸社团对应的扇形圆心角为 度;
(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
2023年中考数学真题知识点汇编之《概率(解答题)》
参考答案与试题解析
一.解答题(共36小题)
1.(2023•广安)“双减”政策实施后,某校为丰富学生的课余生活,开设了A书法,B绘画,C舞蹈,D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.
(1)本次抽取调查学生共有 60 人,估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为 300 人;
(2)请将以上两个统计图补充完整;
(3)甲、乙两名学生要选择参加兴趣班,若他们每人从A,B,C,D四类兴趣班中随机选取一类,请用画树状图或列表法,求两人恰好选择同一类的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)根据B类型的人数及其占总人数的百分比可得被调查的总人数,用总人数乘以样本中D类型人数占被调查的总人数的百分比可得答案;
(2)用总人数乘以A类型对应的百分比可得其人数,据此可补全条形图,分别用C、D类型人数除以总人数求出其所占百分比即可补全扇形图;
(3)画树状图列出所有等可能结果,并从中找到两人恰好选择同一类的结果数,再根据概率公式求解即可.
【解答】解:(1)本次抽取调查的学生总人数为18÷30%=60(人),
估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为3000×660=300(人),
故答案为:60,300;
(2)A选项人数为60×35%=21(人),
C选项人数占被调查的总人数的百分比为1560×100%=25%,
D选项人数占被调查总人数的百分比为660×100%=10%,
补全图形如下:
(3)画树状图为:
共有16种等可能的结果数,其中两人恰好选中同一类的结果数为4,
所以两人恰好选择同一类的概率为416=14.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
2.(2023•徐州)甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;推理能力.
【分析】画树状图,共有8种等可能的结果,其中甲,乙、丙三人选择相同景点的结果有2种,再由概率公式求解即可.
【解答】解:把纪念塔、纪念馆这两个景点分别记为A、B,
画树状图如下:
共有8种等可能的结果,其中甲,乙、丙三人选择相同景点的结果有2种,
∴甲,乙、丙三人选择相同景点的概率为28=14.
【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
3.(2023•辽宁)6月5日是世界环境日,为提高学生的环保意识,某校举行了环保知识竞赛,从全校学生的成绩中随机抽取了部分学生的成绩进行分析,把结果划分为4个等级:A(优秀);B(良好);C(中);D(合格).并将统计结果绘制成如图两幅统计图.
请根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的学生共有 60 名;
(2)补全条形统计图;
(3)该校共有1200名学生,请你估计本次竞赛获得B等级的学生有多少名?
(4)在这次竞赛中,九年一班共有4人获得了优秀,4人中有两名男同学,两名女同学,班主任决定从这4人中随机选出2人在班级为其他同学做培训,请你用列表法或画树状图法,求所选2人恰好是一男一女的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由优秀的人数除以所占百分比即可;
(2)求出C合格的人数,补全条形统计图即可;
(3)由该校共有学生人数乘以“良好”以上的学生所占的比例即可;
(4)画树状图,共有12种等可能的结果,其中被选中的两人恰好是一男一女的结果有6种,再由概率公式求解即可.
【解答】(1)调查的学生共有=1830%=60(名);
故答案为:60;
(2)C合格的人数=60﹣24﹣18﹣3=15(名),
(3)1200×2460=480(名),
答:估计本次竞赛获得B等级的学生有480名;
(4)画树状图如下:
∴一共有12中等可能的情况,其中一男一女的情况有8种,
∴所选2人恰好是一男一女的概率为812=23.
【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
4.(2023•湘潭)为落实“双减”政策要求,丰富学生课余生活,某校七年级根据学生需求,组建了四个社团供学生选择:A(合唱社团)、B(硬笔书法社团)、C(街舞社团)、D(面点社团).学生从中任意选择两个社团参加活动.
(1)小明对这4个社团都很感兴趣,如果他随机选择两个社团,请列举出所有的可能结果;
(2)小宇和小江在选择过程中,首先都选了社团C(街舞社团),第二个社团他俩决定随机选择,请用列表法或树状图求他俩选到相同社团的概率.
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;推理能力.
【分析】(1)列举出所有的可能结果即可;
(2)画树状图,共有9种等可能的结果,其中小宇和小江选到相同社团的结果有3种,再由概率公式求解即可.
【解答】解:(1)所有的可能结果共有6种,分别为:AB、AC、AD、BC、BD、CD;
(2)画树状图如下:
共有9种等可能的结果,其中小宇和小江选到相同社团的结果有3种,
∴他俩选到相同社团的概率为39=13.
【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
5.(2023•张家界)2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.
根据以上信息,解答下列问题:
(1)本次抽取的学生人数为 50 人,扇形统计图中m的值为 30 ;
(2)补全条形统计图;
(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?
(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.
【考点】列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由D组的人数除以所占百分比得出本次抽取的学生人数,即可解决问题;
(2)求出C组的人数,补全条形统计图即可;
(3)由该校九年级学生人数乘以参加家务劳动的时间在80分钟(含80分钟)以上的学生所占的比例即可;
(4)画树状图,共有20种等可能的结果,其中抽取的两名同学中恰好是一名女生和一名男生的结果有12种,再由概率公式求解即可.
【解答】解:(1)本次抽取的学生人数为5÷10%=50(人),
∴m%=15÷50×100%=30%,
∴m=30,
故答案为:50,30;
(2)C组的人数为:50﹣10﹣15﹣5=20(人),
补全条形统计图如下:
(3)600×20+550=300(人),
答:估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生约有300人;
(4)若D组中有3名女生,则有2名男生,
画树状图如下:
共有20种等可能的结果,其中抽取的两名同学中恰好是一名女生和一名男生的结果有12种,
∴抽取的两名同学中恰好是一名女生和一名男生的概率是1220=35.
【点评】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
6.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).
请根据统计图中的信息解答下列问题:
(1)在本次调查中,一共抽取了 24 名学生,在扇形统计图中A所对应圆心角的度数为 30° ;
(2)将上面的条形统计图补充完整;
(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;
(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由B的人数除以所占百分比得出一共抽取的学生人数,即可解决问题;
(2)求出C、D的人数,将条形统计图补充完整即可;
(3)由该校共有学生人数乘以选择研学基地C的学生人数所占的比例即可;
(4)画树状图,共有12种等可能的结果,其中所选2人都是男生的结果有2种,再由概率公式求解即可.
【解答】解:(1)在本次调查中,一共抽取的学生人数为:12÷50%=24(名),
在扇形统计图中A所对应圆心角的度数为:360°×224=30°,
故答案为:24,30°;
(2)C的人数为:24×25%=6(名),
∴D的人数为:24﹣12﹣6﹣2=4(名),
将条形统计图补充完整如下:
(3)480×25%=120(名),
答:估计选择研学基地C的学生人数约为120名;
(4)学基地D的学生中恰有两名女生,则有2名男生,
画树状图如下:
共有12种等可能的结果,其中所选2人都是男生的结果有2种,
∴所选2人都是男生的概率为212=16.
【点评】本题考查的是用树状图法求概率以及扇形统计图和条形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
7.(2023•长春)班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则如下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后放回,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.
【考点】列表法与树状图法;全等三角形的应用;概率公式.菁优网版权所有
【专题】概率及其应用;推理能力.
【分析】画树状图,共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,再由概率公式求解即可.
【解答】解:画树状图如下:
共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,
∴某同学获一等奖的概率为49.
【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
8.(2023•吉林)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆,某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片,请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】根据题意列出图表得出所有等情况数和甲、乙两位选手演讲的主题人物是同一位航天员情况数,然后根据概率公式即可得出答案.
【解答】解:根据题意列表如下:
A
B
C
A
AA
BA
CA
B
AB
BB
CB
C
AC
BC
CC
共有9种等可能结果,其中甲、乙两位选手演讲的主题人物是同一位航天员有3情况,
∴甲、乙两位选手演讲的主题人物是同一位航天员的概率为:39=13.
【点评】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回试验还是不放回试验.会列表和画树状图是解题的关键.
9.(2023•无锡)为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.
(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是 14 .
(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.
【考点】列表法与树状图法;概率公式.菁优网版权所有
【专题】概率及其应用;推理能力.
【分析】(1)根据概率公式求解即可;
(2)画出树状图,得出总的结果数,和恰好抽到景区A和景区B门票的情况即可理由概率公式计算.
【解答】解:(1)一共有4种情况,恰好抽到景区A门票的概率是14,
故答案为:14;
(2)画树状图如下:
∴一共有16种等可能得情况,恰好抽到景区A和景区B门票的情况有2种,
∴他恰好抽到景区A和景区B门票的概率为216=18.
【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
10.(2023•遂宁)为贯彻落实党的二十大关于深化全民阅读活动的重要部署,教育部印发了《全国青少年学生读书行动实施方案》,于是某中学开展了以“书香润校园,好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况,采用随机抽样的方式获取了若干名学生的周末阅读时间数据,整理后得到下列不完整的图表:
类别
A类
B类
C类
D类
阅读时长t(小时)
0≤t<1
1≤t<2
2≤t<3
t≥3
频数
8
m
n
4
请根据图表中提供的信息解答下面的问题:
(1)此次调查共抽取了 40 名学生,m= 18 ,n= 10 ;
(2)扇形统计图中,B类所对应的扇形的圆心角是 162 度;
(3)已知在D类的4名学生中有两名男生和两名女生,若从中随机抽取两人参加阅读分享活动,请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.
【考点】列表法与树状图法;调查收集数据的过程与方法;频数(率)分布表;扇形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由A类的学生人数除以所占百分比得出此次调查共抽取的学生人数,即可解决问题;
(2)由360°乘以B类所占的比例即可;
(3)画树状图,共有12种等可能的结果,其中恰好抽到一名男生和一名女生的结果有8种,再由概率公式求解即可.
【解答】解:(1)此次调查共抽取的学生人数为:8÷20%=40(名),
∴n=40×25%=10,
∴m=40﹣8﹣10﹣4=18,
故答案为:40,18,10;
(2)扇形统计图中,B类所对应的扇形的圆心角是360°×1840=162°,
故答案为:162;
(3)画树状图如下:
共有12种等可能的结果,其中恰好抽到一名男生和一名女生的结果有8种,
∴恰好抽到一名男生和一名女生的概率为812=23.
【点评】此题考查的是用树状图法求概率以及频数分布表和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
11.(2023•鄂州)2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,鄂州市某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.
(1)九(1)班共有 50 名学生;并补全图1折线统计图;
(2)请阅读图2,求出D所对应的扇形圆心角的度数;
(3)若小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
【考点】列表法与树状图法;频数(率)分布折线图;扇形统计图;条形统计图.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)由B的人数除以所占百分比即可;求出D的人数,即可解决问题;
(2)由360°乘以D所占的比例即可;
(3)画树状图,共有16种等可能的结果,小林和小峰选择相同主题的结果有4种,再由概率公式求解即可.
【解答】解:(1)九(1)班共有学生人数为:20÷40%=50(名),
D的人数为:50﹣10﹣20﹣5=15(名),
补全折线统计图如下:
故答案为:50;
(2)D所对应扇形圆心角的大小为:360°×1550=108°,
∴D所对应的扇形圆心角的度数为:108°;
(3)画树状图如图:
共有16种等可能的结果,小林和小峰选择相同主题的结果有4种,
∴小林和小峰选择相同主题的概率为416=14.
【点评】本题考查的是用列表法或画树状图法求概率以及折线统计图和扇形统计图.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.掌握概率公式:概率=所求情况数与总情况数之比是解题的关键.
12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.
学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.
等级
劳动积分
人数
A
x≥90
4
B
80≤x<90
m
C
70≤x<80
20
D
60≤x<70
8
E
x<60
3
请根据图表信息,解答下列问题:
(1)统计表中m= 15 ,C等级对应扇形的圆心角的度数为 144° ;
(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;
(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.
【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;扇形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由D等级的人数除以所占百分比得出抽取的学生人数,即可解决问题;
(2)由该学校共有学生人数乘以该学校“劳动之星”所占的比例即可;
(3)画树状图,共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,再由概率公式求解即可.
【解答】解:(1)抽取的学生人数为:8÷16%=50(人),
∴m=50﹣4﹣20﹣8﹣3=15,
C等级对应扇形的圆心角的度数为:360°×2050=144°,
故答案为:15,144°;
(2)2000×4+1550=760(人),
答:估计该学校“劳动之星”大约有760人;
(3)画树状图如下:
共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,
∴恰好抽取一名男同学和一名女同学的概率为812=23.
【点评】本题考查了树状图法以及频数分布表和扇形统计图等知识,树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
13.(2023•福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
(1)求该顾客首次摸球中奖的概率;
(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)用概率公式直接可得答案;
(2)记往袋中加入的球为“新”,列表求出所有等可能的情况,分别求出新球为红色,黄色时获得精美礼品的概率,比较概率大小即可得到答案.
【解答】解:(1)顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果,
记“首次摸得红球”为事件A,则事件A发生的结果只有1种,
∴P(A)=14,
∴顾客首次摸球中奖的概率为 14;
(2)他应往袋中加入黄球;理由如下:
记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:
红
黄①
黄②
黄③
新
红
红,黄①
红,黄②
红,黄③
红,新
黄①
黄①,红
黄①,黄②
黄①,黄③
黄①,新
黄②
黄②,红
黄②,黄①
黄②,黄③
黄②,新
黄③
黄③,红
黄③,黄①
黄③,黄②
黄③,新
新
新,红
新,黄①
新,黄②
新,黄③
共有20种等可能结果,
(i)若往袋中加入的是红球,两球颜色相同的结果共有8种,此时该顾客获得精美礼品的概率 P1=820=25;
(i)若往袋中加入的是黄球,两球颜色相同的结果共有12种,此时该顾客获得精美礼品的概率 P2=1220=35;
∵25<35,
∴P1<P2,
∴他应往袋中加入黄球.
【点评】本题考查的是用列表法或画树状图法求概率,注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
14.(2023•荆州)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).
组别
身高分组
人数
A
155≤x<160
3
B
160≤x<165
2
C
165≤x<170
m
D
170≤x<175
5
E
175≤x<180
4
根据以上信息回答:
(1)这次被调查身高的志愿者有 20 人,表中的m= 6 ,扇形统计图中α的度数是 54° ;
(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.
【考点】列表法与树状图法;频数(率)分布表;扇形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;数据分析观念.
【分析】(1)由A、B、D、E四组的人数除以所占百分比得出这次被调查身高的志愿者人数,即可解决问题;
(2)画树状图,求得有12种等可能的结果,其中刚好抽中两名女志愿者的结果有2种,再由概率公式求解即可.
【解答】解:(1)这次被调查身高的志愿者有:(3+2+5+4)÷(1﹣30%)=20(人),
∴m=20×30%=6,
扇形统计图中α的度数是:360°×320=54°,
故答案为:20,6,54°;
(2)画树状图如下:
共有12种等可能的结果,其中刚好抽中两名女志愿者的结果有2种,
∴P(刚好抽中两名女志愿者)=212=16.
【点评】本题考查了树状图法求概率以及频数分布表和扇形统计图等知识,树状图法可以不重不漏的列举出所有可能发生的情况,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
15.(2023•岳阳)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A包粽子,B腌咸蛋,C酿甜酒,D摘艾叶,每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:
(1)本次共调查了 100 名学生;
(2)请补全条形统计图;
(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A和C两个社团的概率.
【考点】列表法与树状图法;扇形统计图;条形统计图.菁优网版权所有
【专题】统计与概率;数据分析观念.
【分析】(1)根据C组人数和所占的百分比,可以计算出本次调查的学生人数;
(2)根据(1)中的结果和条形统计图中的数据,可以计算出B组的人数,然后即可将条形统计图补充完整;
(3)根据题意,可以画出相应的树状图,然后即可计算出同时选中A和C两个社团的概率.
【解答】解:(1)25÷25%=100(名),
即本次共调查了100名学生,
故答案为:100;
(2)选择B的学生有:100﹣40﹣25﹣15=20(名),
补全的条形统计图如右图所示;
(3)树状图如下所示,
由上可得,一共有12种等可能性,其中同时选中A和C两个社团的可能性有2种,
∴同时选中A和C两个社团的概率为212=16.
【点评】本题考查列表法与树状图法、扇形统计图、条形统计图,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.
16.(2023•随州)中学生心理健康受到社会的广泛关注,某校开展心理健康教育专题讲座,就学生对心理健康知识的了解程度,采用随机抽样调查的方式,根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有 80 人,条形统计图中m的值为 16 ,扇形统计图中“非常了解”部分所对应扇形的圆心角的度数为 90° ;
(2)若该校共有学生800人,根据上述调查结果,可以估计出该校学生中对心理健康知识“不了解”的总人数为 40 人;
(3)若某班要从对心理健康知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加心理健康知识竞赛,请用列表或画树状图的方法,求恰好抽到2名女生的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】数据的收集与整理;统计的应用;概率及其应用;数据分析观念;应用意识.
【分析】(1)将基本了解的人数除以其所占百分比即可得到接受调查的学生总数;将接受调查的学生总数减去另外三项人数即可求出M的值;将“非常了解”占比乘以360°即可求出扇形统计图中“非常了解”部分所对应扇形的圆心角的度数;
(2)将该校学生总数乘以样本中该校学生中对心理健康知识“不了解”的占比即可;
(3)用列表法或树状图法列举出所有等可能的结果,从中找出恰好抽到2名女生的可能结果,再利用等可能事件的概率公式求出即可.
【解答】解:(1)∵基本了解的有40人,占50%,
∴接受问卷调查的学生共有40÷50%=80(人),
条形统计图中m的值为:80﹣20﹣40﹣4=16,
扇形统计图中“非常了解”部分所对应扇形的圆心角的度数为:2080×360°=90°,
故答案为:80,16,90°;
(2)可以估计出该校学生中对心理健康知识“不了解”的总人数为:800×480=40人),
故答案为:40;
(3)画树状图如下:
一共有12种等可能的结果,其中恰好抽到2名女生的结果有2种,
∴P(恰好抽到2名女生)=212=16.
【点评】本题考查扇形统计图,条形统计图,用样本估计总体,列表法和树状图法求等可能事件的概率,能从统计图中获取有用信息,掌握列表法和树状图法求等可能事件的概率的方法是解题的关键.
17.(2023•广元)为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:
(1)求第四小组的频数,并补全频数分布直方图;
(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;
(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.
【考点】列表法与树状图法;总体、个体、样本、样本容量;用样本估计总体;频数(率)分布直方图;扇形统计图.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】(1)先利用第二次的人数除以它所占的百分比得到调查的总人数,再计算出第四小组的频数,然后补全频数分布直方图;
(2)用1260乘以样本中第5组和第6组的频率即可;
(3)画树状图为展示所有12种等可能的结果,再找出两名都是男生的结果数.然后根据概率公式求解.
【解答】解:(1)调查的总人数为12÷20%=60(人),
所以第四小组的频数为60﹣6﹣12﹣18﹣10﹣4=10,
补全频数分布直方图为:
(2)1260×10+460=294(人),
所以估计该校学生“一分钟跳绳”成绩为优秀的人数294人;
(3)画树状图为:
共有12种等可能的结果,其中两名都是男生的结果数为6,
所以所选2人都是男生的概率=612=12.
【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.
18.(2023•陕西)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.
(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为 12 ;
(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.
【考点】列表法与树状图法;概率公式.菁优网版权所有
【专题】统计与概率;数据分析观念.
【分析】(1)根据题意和题目中的数据,可以计算出从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率;
(2)根据题意可以画出相应的树状图,然后即可求出摸出的这两个小球上标有的数字之积是偶数的概率.
【解答】解:(1)由题意可得,
从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为24=12,
故答案为:12;
(2)树状图如下:
由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种,
∴摸出的这两个小球上标有的数字之积是偶数的概率716.
【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.
19.(2023•扬州)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从A、B、C三个景点中随机选择一个景点游览.
(1)甲选择A景点的概率为 13 ;
(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择C景点的概率.
【考点】列表法与树状图法;概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)由概率公式直接可得答案;
(2)先画出树状图,共有9种等可能的情况,再根据概率公式,计算即可得出结果.
【解答】解:(1)甲选择A景点的概率为13,
故答案为:13;
(2)根据题意画树状图如下:
∵共有9种等可能的情况,其中甲、乙两人中至少有一人选择C景点的情况有5种,
∴甲、乙两人中至少有一人选择C景点的概率是59.
【点评】本题考查了用树状图求概率,解本题的关键在根据树状图找出所有等可能的情况数.概率等于所求情况数与总情况数之比.
20.(2023•乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.
家务类型
洗衣
拖地
煮饭
刷碗
人数(人)
10
12
10
m
根据上面图表信息,回答下列问题:
(1)m= 8 ;
(2)在扇形统计图中,“拖地”所占的圆心角度数为 108° ;
(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.
【考点】列表法与树状图法;统计表;扇形统计图.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)先根据煮饭人数及其所占百分比求出总人数,继而可得m的值;
(2)用360°乘以“拖地”所占比例即可;
(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解答】解:(1)因为被调查的总人数为10÷25%=40(人),
所以m=40﹣(10+12+10)=8,
故答案为:8;
(2)在扇形统计图中,“拖地”所占的圆心角度数为360°×1240=108°,
故答案为:108°;
(3)列表如下:
男1
男2
女1
女2
男1
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男2,男1)
(男2,女1)
(男2,女2)
女1
(女1,男1)
(女1,男2)
(女1,女2)
女2
(女2,男1)
(女2,男2)
(女2,女1)
由表知,共有12种等可能结果,其中所选同学中有男生的有10种结果,
所以所选同学中有男生的概率为1012=56.
【点评】本题考查的是条形统计图和扇形统计图以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21.(2023•江西)为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.
(1)“甲、乙同学都被选为宣传员”是 随机 事件;(填“必然”、“不可能”或“随机”)
(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.
【考点】列表法与树状图法;随机事件.菁优网版权所有
【专题】统计与概率;数据分析观念.
【分析】(1)根据题意可知:“甲、乙同学都被选为宣传员”是随机事件;
(2)根据题意可以画出相应的树状图,然后即可求得甲、丁同学都被选为宣传员的概率.
【解答】解:(1)由题意可得,
“甲、乙同学都被选为宣传员”是随机事件,
故答案为:随机;
(2)树状图如下所示:
由上可得,一共有12种等可能事件,其中甲、丁同学都被选为宣传员的可能性有2种,
∴甲、丁同学都被选为宣传员的概率为:212=16.
【点评】本题考查列表法与树状图法、随机事件,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.
22.(2023•宜昌)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A文学类,B科幻类,C漫画类,D数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:
书籍类别
学生人数
A文学类
24
B科幻类
m
C漫画类
16
D数理类
8
(1)本次抽查的学生人数是 80 ,统计表中的m= 32 ;
(2)在扇形统计图中,“C漫画类”对应的圆心角的度数是 72° ;
(3)若该校共有1200名学生,请你估计该校学生选择“D数理类”书籍的学生人数;
(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.
【考点】列表法与树状图法;用样本估计总体;统计表;扇形统计图.菁优网版权所有
【专题】概率及其应用;数据分析观念;运算能力.
【分析】(1)根据A组人数和所占的百分比,可以计算出本次调查的学生人数;根据总人数,可以计算出B组的人数,
(2)根据C组所占的百分比乘以360°即可得到结论;
(3)根据题意,可以画出相应的树状图,然后他们选择同一社团的概率的概率.
【解答】解:(1)24÷30%=80(人),80﹣24﹣16﹣8=32(人),答:本次抽查的学生人数是80人,统计表中的m=32;
故答案为:80,32;
(2)“C漫画类”对应的圆心角的度数是360°×1680=72°,
故答案为:72°;
(3)1200×880=120(人),
答:估计该校学生选择“D数理类”书籍的学生人数约为120人;
(4)列树状图如图所示,
由上可得,一共有16种等可能性,其中他们选择同一社团的可能性有4种,
∴他们选择同一社团的概率为416=14.
【点评】本题考查列表法与树状图法、扇形统计图、条形统计图,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.
23.(2023•内江)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团.该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)此次调查一共随机抽取了 200 名学生,补全条形统计图(要求在条形图上方注明人数);
(2)扇形统计图中圆心角α= 54 度;
(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.
【考点】列表法与树状图法;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由B的人数除以所占百分比得出此次调查一共随机抽取的学生人数,即可解决问题;
(2)由360°乘以C的人数所占的比例即可;
(3)画树状图,共有12种等可能的结果,其中恰好选中甲和乙两名同学的结果有2种,再由概率公式求解即可.
【解答】解:(1)此次调查一共随机抽取的学生人数为:50÷25%=200(名),
∴C的人数为:200﹣30﹣50﹣70﹣20=30(名),
故答案为:200,
补全条形统计图如下:
(2)扇形统计图中圆心角α=360°×30200=54°,
故答案为:54;
(3)画树状图如下:
共有12种等可能的结果,其中恰好选中甲和乙两名同学的结果有2种,
∴恰好选中甲和乙两名同学的概率为212=16.
【点评】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
24.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.
请根据统计图解答下列问题:
(1)本次调查中,一共调查了 20 名学生,其中选择“C家用器具使用与维护”的女生有 2 名,“D烹饪与营养”的男生有 1 名;
(2)补全上面的条形统计图和扇形统计图;
(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.
【考点】列表法与树状图法;扇形统计图;条形统计图.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】(1)先用选择A的人数除以它所占的百分比得到调查的总人数,再计算出选择C的人数,从而得到选择C的女生人数,然后计算出选择D的人数,从而得到选择D的男生人数;
(2)由(1)得到选择C的女生人数和选择D的男生人数,再计算出选择D的人数所占的百分比,然后补全条形统计图和扇形统计图;
(3)画树状图展示所有20种等可能的结果,再找出所选的学生恰好是一名男生和一名女生的结果数,然后根据概率公式计算.
【解答】解:(1)3÷15%=20(名),
所以本次调查中,一共调查了20名学生,
“C家用器具使用与维护”的女生数为25%×20﹣3=2(名),
“D烹饪与营养”的男生数为20﹣3﹣10﹣5﹣1=1(名);
故答案为:20;2;1;
(2)选择“D烹饪与营养”的人数所占的百分比为:220×100%=10%,
补全上面的条形统计图和扇形统计图为:
(3)画树状图为:
共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果数为12,
所以所选的学生恰好是一名男生和一名女生的概率=1220=35.
【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.
25.(2023•湖北)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的m= 18 ,n= 6 ,文学类书籍对应扇形圆心角等于 72 度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由喜欢E的人数除以所占百分比得出调查的学生人数,即可解决问题;
(2)由该校共有学生人数乘以最喜欢阅读政史类书籍的学生人数所占的比例即可;
(3)画树状图,共有91种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,再由概率公式求解即可.
【解答】解:(1)调查的学生人数为:4÷8%=50(人),
∴m=50×36%=18,
∴n=50﹣18﹣10﹣12﹣4=6,
文学类书籍对应扇形圆心角=360°×1050=72°,
故答案为:18,6,72;
(2)2000×1250=480(人),
答:估计最喜欢阅读政史类书籍的学生人数约为480人;
(3)画树状图如下:
共有91种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,即BB、CC,
∴甲乙两位同学选择相同类别书籍的概率为29.
【点评】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
26.(2023•烟台)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A,B,C,D,E五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.
(1)请将条形统计图补充完整;
(2)在扇形统计图中,D所在的扇形的圆心角的度数为 14.4° ;若该市有1000名中学生参加本次活动,则选择A大学的大约有 200 人;
(3)甲、乙两位同学计划从A,B,C三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】统计与概率;数据分析观念.
【分析】(1)根据C组的人数和所占的百分比,可以计算出本次抽取的学生人数,然后即可计算出选择B的人数,从而可以将条形统计图补充完整;
(2)根据条形统计图中的数据,可以计算出在扇形统计图中,D所在的扇形的圆心角的度数和该市有1000名中学生参加本次活动,选择A大学的学生人数;
(3)根据题意,可以画出相应的树状图,然后即可求得相应的概率.
【解答】解:(1)本次抽取的学生有:14÷28%=50(人),
其中选择B的学生有:50﹣10﹣14﹣2﹣8=16(人),
补全的条形统计图如右图所示;
(2)在扇形统计图中,D所在的扇形的圆心角的度数为:360°×250=14.4°,
该市有1000名中学生参加本次活动,则选择A大学的大约有:1000×1050=200(人),
故答案为:14.4°,200;
(3)树状图如下所示:
由上可得,一共有9种等可能性,其中两人恰好选取同一所大学的可能性有3种,
∴两人恰好选取同一所大学的概率为39=13.
【点评】本题考查列表法与树状图法、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.
27.(2023•苏州)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.
(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为 14 ;
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)
【考点】列表法与树状图法;概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念;应用意识.
【分析】(1)直接利用概率公式求出即可;
(2)用列表法或树状图法列举出所有等可能的结果,从中找出第2次摸到的小球编号比第1次摸到的小球编号大1的结果,然后利用等可能事件的概率公式求出即可.
【解答】解:(1)∵一共有4个编号的小球,编号为2的有一个,
∴P(任意摸出1个球,这个球的编号是2)=14;
(2)画树状图如下:
一共有在16个等可能的结果,其中第2次摸到的小球编号比第1次摸到的小球编号大1出现了3次,
∴P(第2次摸到的小球编号比第1次摸到的小球编号大1)=316.
【点评】本题考查概率公式,列表法和树状图法求等可能事件的概率,掌握列表法和树状图法求等可能事件的概率的方法是解题的关键.
28.(2023•巴中)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.
等级
周平均读书时间t(单位;小时)
人数
A
0≤t<1
4
B
1≤t<2
a
C
2≤t<3
20
D
3≤t<4
15
E
t≥4
5
(1)求统计图表中a= 6 ,m= 40 .
(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为 1120人 .
(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.
【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;扇形统计图.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)先根据D等级人数及其所占百分比求出样本容量,再根据各等级人数之和等于总人数可求得a的值,用C等级人数除以总人数看求得m的值;
(2)用总人数乘以样本中D、E组人数和占被调查人数的比例即可得出答案;
(3)列表得出所有等可能结果,从表格中找到选出1名男生1名女生参加交流会的结果,再根据概率公式列式计算即可.
【解答】解:(1)∵样本容量为15÷30%=50,
∴a=50﹣(4+20+15+5)=6,
m%=2050×100%=40%,即m=40,
故答案为:6,40;
(2)估计该校每周读书时间至少3小时的人数为2800×15+550=1120(人),
故答案为:1120人;
(3)根据题意列表如下:
男1
男2
男3
女
男1
﹣﹣
男2男1
男3男1
女男1
男2
男1男2
﹣﹣
男3男2
女男2
男3
男1男3
男2男3
﹣﹣
女男3
女
男1女
男2女
男3女
﹣﹣
由表格可知,共有12种等可能出现的结果,其中该班恰好选出1名男生1名女生参加交流会的结果有6种,
所以该班恰好选出1名男生1名女生参加交流会的概率为612=12.
【点评】此题考查的是用列表法求概率以及频数分布表、扇形统计图等知识.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
29.(2023•宜宾)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理,绘制如图所示的不完整统计图.根据图表信息回答以下问题:
类别
劳动时间x
A
0≤x<1
B
1≤x<2
C
2≤x<3
D
3≤x<4
E
4≤x
(1)九年级1班的学生共有 50 人,补全条形统计图;
(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
(3)已知E类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.
【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;条形统计图.菁优网版权所有
【专题】数据的收集与整理;概率及其应用;应用意识.
【分析】(1)由C的人数及对应的百分数可得九年级1班的学生共有50人;求出B的人数为14人,D的人数为8人,再补全条形统计图;
(2)用样本估计总体的方法可得答案;
(3)列树状图用概率公式可得答案.
【解答】解:(1)∵15÷30%=50(人),
∴九年级1班的学生共有50人;
∴B的人数为50×28%=14(人),
∴D的人数为50﹣8﹣14﹣15﹣5=8(人),
补全条形统计图如下:
故答案为:50;
(2)∵800×8+550=208(人),
∴估计周末在家劳动时间在3小时及以上的学生人数为208人;
(3)列树状图如下:
由图可知,一共有20中等可能的情况,其中恰为一男一女的情况有12种,
∴所抽的两名学生恰好是一男一女的概率是P=1220=35.
【点评】本题考查条形统计图,扇形统计图,解题的关键是从图中获取有用的信息和列树状图求求概率.
30.(2023•连云港)如图,有4张分别印有Q版西游图案的卡片:A唐僧、B孙悟空、C猪八戒、D沙悟净.
现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率:
(1)第一次取出的卡片图案为“B孙悟空”的概率为 14 ;
(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A唐僧”的概率.
【考点】列表法与树状图法;随机事件.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】(1)直接根据概率公式计算;
(2)画树状图展示所有16种等可能的结果,再找出两次取出的2张卡片中至少有1张图案为“A唐僧”的结果数,然后根据概率公式求解.
【解答】解:(1)第一次取出的卡片图案为“B孙悟空”的概率为14;
故答案为:14;
(2)画树状图为:
共有16种等可能的结果,其中两次取出的2张卡片中至少有1张图案为“A唐僧”的结果数为7,
所以两次取出的2张卡片中至少有1张图案为“A唐僧”的概率=716.
【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.
31.(2023•金昌)为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.
(1)求小亮从中随机抽到卡片A的概率;
(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.
【考点】列表法与树状图法.菁优网版权所有
【分析】(1)直接由概率公式求解即可;
(2)画树状图,共有9种等可能的结果,其中小亮和小刚两人都抽到卡片C的结果有1种,再由概率公式求解即可.
【解答】解:(1)小亮从中随机抽到卡片A的概率为13;
(2)画树状图如下:
共有9种等可能的结果,其中小亮和小刚两人都抽到卡片C的结果有1种,
∴两人都抽到卡片C的概率是19.
【点评】此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
32.(2023•云南)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.
(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;
(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】(1)根据题意画出树状图,再由树状图求得所有等可能的结果即可;
(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,再由概率公式求解即可.
【解答】解:(1)画树状图如下:
共有9种等可能的结果,分别为(A,A)、(A,B)、(A,C)、(B,A),(B,C),(B,B)、(C,A)、(C,B)、(C,C);
(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,
∴甲、乙两名同学选择种植同一种蔬菜的概率P=39=13.
【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
33.(2023•眉山)某校为落实“双减”工作,推行“五育并举”,计划成立五个兴趣活动小组(每个学生只能参加一个活动小组):A.音乐,B.美术,C.体育,D.阅读,E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图:
根据图中信息,完成下列问题:
(1)①补全条形统计图(要求在条形图上方注明人数);
②扇形统计图中的圆心角α的度数为 120° .
(2)若该校有3600名学生,估计该校参加E组(人工智能)的学生人数;
(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四位同学中随机抽取两人参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】(1)①先根据B小组人数及其所对应的百分比可得被调查的总人数,再根据5个兴趣小组人数之和等于总人数求出D小组人数,从而补全图形;
②用360°乘以D小组人数占被调查人数的比例即可;
(2)用总人数乘以样本中E小组人数占被调查人数的比例即可;
(3)画树状图列举出所有等可能结果,再从树状图中确定恰好抽到一名男生一名女生的结果数,继而利用概率公式求解即可得出答案.
【解答】解:(1)由题意知,被调查的总人数为30÷10%=300(人),
所以D小组人数为300﹣(40+30+70+60)=100(人),
补全图形如下:
②扇形统计图中的圆心角α的度数为360°×100300=120°,
故答案为:120°;
(2)3600×60300=720(名),
答:估计该校参加E组(人工智能)的学生有720名;
(3)画树状图为:
由树状图知,共有12种等可能的结果,其中一名男生和一名女生的结果数为8,
所以恰好抽到一名男生一名女生的概率为812=23.
【点评】此题考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.
34.(2023•凉山州)2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海泸山风景区(以下分别用A、B、C、D表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的游客有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若某游客随机选择A、B、C、D四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A的概率.
【考点】列表法与树状图法;全面调查与抽样调查;扇形统计图;条形统计图.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】(1)用B景点的人数除以它所占的百分比得到调查的总人数;
(2)先计算出C景点的人数,则可补全条形统计图,然后分别计算出A景点和C景点所占的百分比,从而补全扇形统计图;
(3)画树状图展示所有12种等可能的结果,再找出他第一个景区恰好选择A的结果数,然后根据概率公式计算.
【解答】解:(1)60÷10%=600(人),
所以本次参加抽样调查的游客有600人;
(2)C景点的人数为600﹣180﹣60﹣240=120(人),
C景点的人数所占的百分比为120600×100%=20%,
A景点的人数所占的百分比为180600×100%=30%,
两幅不完整的统计图补充为:
(3)画树状图为:
共有12种等可能的结果,他第一个景区恰好选择A的结果数为3,
所以他第一个景区恰好选择A的概率=312=14.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
35.(2023•南充)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).
(1)已知该班有15人参加A类活动,则参加C类活动有多少人?
(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.
【考点】列表法与树状图法;扇形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由参加A类活动的人数除以所占百分比得出该班总人数,即可解决问题;
(2)画树状图,共有12种等可能的结果,其中刚好抽中王丽和1名男生的结果有4种,再由概率公式求解即可.
【解答】解:(1)该班总人数为:15÷30%=50(人),
∴参加C类活动有:50×(1﹣30%﹣28%﹣22%)=50×20%=10(人),
答:参加C类活动有10人;
(2)把2名女生分别记为A、B(其中A为王丽),2名男生分别记为C、D,
画树状图如下:
共有12种等可能的结果,其中刚好抽中王丽和1名男生的结果有4种,
∴刚好抽中王丽和1名男生的概率为412=13.
【点评】此题考查的是树状图法以及扇形统计图.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
36.(2023•达州)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.
(1)该班共有学生 50 人,并把条形统计图补充完整;
(2)扇形统计图中,m= 20 ,n= 10 ,参加剪纸社团对应的扇形圆心角为 144 度;
(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
【考点】列表法与树状图法;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【分析】(1)由C的人数除以所占百分比得出该班共有学生人数,即可解决问题;
(2)由(1)的结果分别列式计算即可;
(3)画树状图,其中恰好是小鹏和小兵参加比赛的结果有2种,再由概率公式求解即可.
【解答】解:(1)该班共有学生人数为:5÷10%=50(人),
则D的人数为:50﹣20﹣10﹣5﹣10=5(人),
故答案为:50,
把条形统计图补充完整如下:
(2)∵m%=10÷50×100%=20%,n%=5÷50×100%=10%,
∴m=20,n=10,
参加剪纸社团对应的扇形圆心角为:360°×2050=144°,
故答案为:20,10,144;
(3)把小鹏和小兵分别记为a、b,其他3位同学分别记为c、d、e,
画树状图如下:
共有20种等可能的结果,其中恰好是小鹏和小兵参加比赛的结果有2种,
∴恰好是小鹏和小兵参加比赛的概率为220=110.
【点评】此题考查的是树状图法以及条形统计图和扇形统计图.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
考点卡片
1.全等三角形的应用
(1)全等三角形的性质与判定综合应用
用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.
(2)作辅助线构造全等三角形
常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.
(3)全等三角形在实际问题中的应用
一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.
2.调查收集数据的过程与方法
(1)在统计调查中,我们利用调查问卷收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.
(2)统计图通常有条形统计图,扇形统计图,折线统计图.
(3)设计调查问卷分以下三步:①确定调查目的;②选择调查对象;③设计调查问题.
(4)统计调查的一般过程:
①问卷调查法﹣﹣﹣﹣﹣收集数据;
②列统计表﹣﹣﹣﹣﹣整理数据;
③画统计图﹣﹣﹣﹣﹣描述数据.
3.全面调查与抽样调查
1、统计调查的方法有全面调查(即普查)和抽样调查.
2、全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如:个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.如:某一天,全国人均讲话的次数,便无法进行普查.
4.总体、个体、样本、样本容量
(1)定义
①总体:我们把所要考察的对象的全体叫做总体;
②个体:把组成总体的每一个考察对象叫做个体;
③样本:从总体中取出的一部分个体叫做这个总体的一个样本;
④样本容量:一个样本包括的个体数量叫做样本容量.
(2)关于样本容量
样本容量只是个数字,没有单位.
5.用样本估计总体
用样本估计总体是统计的基本思想.
1、用样本的频率分布估计总体分布:
从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
6.频数(率)分布表
1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
2、列频率分布表的步骤:
(1)计算极差,即计算最大值与最小值的差.
(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
(3)将数据分组.
(4)列频率分布表.
7.频数(率)分布直方图
画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
8.频数(率)分布折线图
一般利用直方图画频数分布折线图,在频数分布直方图中,把每个小长方形上面的一条边的中点顺次连接起来,得到频数折线图.
注意:折线图要与横轴相交,方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到假想组中点,它主要显示数据的变化趋势.
9.统计表
统计表可以将大量数据的分类结果清晰,一目了然地表达出来.
统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格. 统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.
10.扇形统计图
(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
(3)制作扇形图的步骤
①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
11.条形统计图
(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
(2)特点:从条形图可以很容易看出数据的大小,便于比较.
(3)制作条形图的一般步骤:
①根据图纸的大小,画出两条互相垂直的射线.
②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.
③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.
④按照数据大小,画出长短不同的直条,并注明数量.
12.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
13.概率公式
(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
14.列表法与树状图法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/7/9 9:01:48;用户:组卷3;邮箱:zyb003@xyh.com;学号:41418966
相关试卷
这是一份中考数学二轮精品专题复习 整式(解答题),共15页。试卷主要包含了,其中a=33, 其中a=﹣1,b=14,+3a2,其中a=−13,2−25+|﹣4|;,计算,2,其中a=﹣3,b=13,的值等内容,欢迎下载使用。
这是一份中考数学二轮精品专题复习 圆(解答题二),共118页。
这是一份中考数学二轮精品专题复习 图形的旋转(解答题),共65页。试卷主要包含了综合与实践等内容,欢迎下载使用。