高考数学二轮复习培优专题第6讲 导数的极值与最值题型总结(含解析)
展开第6讲 导数的极值与最值题型总结
【考点分析】
考点一:函数的驻点
若,我们把叫做函数的驻点.
考点二:函数的极值点与极值
①极大值点与极大值:函数在点附近有定义,如果对附近的所有点都有,则称是函数的一个极大值,记作,其中叫做函数的极大值点
②极小值点与极小值:函数在点附近有定义,如果对附近的所有点都有,则称是函数的一个极小值,记作,其中叫做函数的极小值点
考点三:求可导函数极值的步骤
①先确定函数的定义域;
②求导数;
③求方程的根;
④检验在方程的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数在这个根处取得极小值.
注意:可导函数在满足是在取得极值的必要不充分条件,如,,但不是极值点.
考点四:函数的最值
一个连续函数在闭区间上一定有最值,最值要么在极值点处取得,要么在断点处取得。
求函数最值的步骤为:
①求在内的极值(极大值或极小值);
②将的各极值与和比较,其中最大的一个为最大值,最小的一个为最小值.
【题型目录】
题型一:求函数的极值与极值点
题型二:根据极值、极值点求参数的值
题型三:根据极值、极值点求参数的范围
题型四:利用导数求函数的最值(不含参)
题型五:根据最值求参数
题型六:根据最值求参数范围
【典例例题】
题型一:求函数的极值与极值点
【方法总结】
利用导数求函数极值的步骤如下:
(1)求函数的定义域;
(2)求导;
(3)解方程,当;
(4)列表,分析函数的单调性,求极值:
①如果在附近的左侧,右侧,那么是极小值;
②如果在附近的左侧,右侧,那么是极大值
【例1】(2022石泉县石泉中学)函数的极小值为( )
A.0 B. C. D.
【答案】A
【解析】由,得,
当时,,单调递增;
当或时,,单调递减;
所以当时,函数取得极小值,
极小值为.
故选:A.
【例2】(2021·河南新乡市)已知函数的图象在处的切线方程为,则的极大值为( )
A. B. C. D.1
【答案】A
【解析】因为,所以,
又因为函数在图象在处的切线方程为,
所以,,解得,.
由,,,,,知在处取得极大值,.故选:A.
【例3】若函数在上有小于的极值点,则实数的取值范围是( )
A. B. C. D.
【答案】B
【解析】由
因为在上有小于的极值点,所以有小于0的根,由的图像如图:
可知有小于0的根需要,所以选择B
【例4】(2022·江西师大附中三模(理))已知函数为的导函数.
(1)判断函数在区间上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;
【答案】(1)存在;极小值
【分析】(1)转化为判断导函数是否存在变号零点,对求导后,判断的单调性,结合零点存在性定理可得结果;
【解析】(1)由,可得,
则,
令,其中,可得,
所以在上单调递增,即在上单调递增,
因为,所以存在,使得,
当时,单调递减;当时,单调递增,
所以当时,函数取得极小值.
【例5】(2022·江苏苏州·模拟预测)函数.
(1)求函数在上的极值;
【答案】(1)极大值,;极小值,;
【分析】(1)由题可得,进而可得;
【解析】(1)∵,
∴,,
由,可得,或,
∴,单调递增,,单调递减,,单调递增,
∴时,函数有极大值,时,函数有极小值;
【题型专练】
1.已知e为自然对数的底数,设函数,则
A.1是的极小值点 B.﹣1是的极小值点
C.1是的极大值点 D.﹣1是的极大值点
【答案】B
【解析】
【详解】
试题分析:,当时,,当时,,当时,,所以当时,函数取得极小值,是函数的极小值点,故选B.
考点:导数与极值
2.(2022福建省福建师大附中高二期末多选)定义在的函数,已知是它的极大值点,则以下结论正确的是( )
A.是的一个极大值点
B.是的一个极小值点
C.是的一个极大值点
D.是的一个极小值点
【答案】AD
【解析】是的极大值点,就是存在正数,使得在上,,在上,.
设,,
当时,,,,同理时,,∴是的一个极大值点,从而是的一个极小值点,是的一个极小值点.不能判定是不是的极值点.故选:AD.
3.(2022江西高三期中(文))已知函数,,其中.
(1)求函数的极值;
(2)若的图像在,处的切线互相垂直,求的最小值.
【答案】(1)答案见解析;(2)1.
【解析】
(1)函数的定义或为,
,
若,恒成立,此时在上单调递增,无极值;
若时,,解得,
当时,,单调递减;
当时,,单调递增.
当时,有极小值,无极大值.
(2),则,其中,,
,且,,
,
当且仅当时取等号,
当,时,取最小值1.
题型二:根据极值、极值点求参数的值
【方法总结】
解含参数的极值问题要注意:
①是为函数极值点的必要不充分条件,故而要注意检验;
②若函数在区间内有极值,那么在内绝不是单调函数,即在某区间上的单调函数没有极值.
【例1】(2022全国课时练习)若函数的极小值点是,则的极大值为( )
A. B. C. D.
【答案】C
【解析】由题意,函数,可得,
所以,解得,故,
可得,
则在上单调递增,在上单调递减,在上单调递增,
所以的极大值为.故选:C.
【例2】(2021·全国课时练习)若函数在处取得极小值,则a=__________.
【答案】2
【解析】由可得,
因为函数在处取得极小值,
所以,解得或,
若,则,
当时,,则单调递增;当时,,则单调递减;
当时,,则单调递增;所以函数在处取得极小值,符合题意;
当时,,
当时,,则单调递增;当时,,则单调递减;
当时,,则单调递增;所以函数在处取得极大值,不符合题意;
综上:.
故答案为:2.
【例3】(2022·江苏南通·模拟预测)已知函数在处取极小值,且的极大值为4,则( )
A.-1 B.2 C.-3 D.4
【答案】B
【解析】
【分析】
对求导,由函数在处取极小值,所以,所以,,对求导,求单调区间及极大值,由的极大值为4,列方程得解.
【详解】
解:,所以
因为函数在处取极小值,所以,所以,,,
令,得或,当时,,所以在单调递增,当时,,所以在单调递增,当时,,所以在单调递增,所以在处有极大值为,解得,所以.
故选:B
【题型专练】
1.设函数,若是函数是极大值点,则函数的极小值为________
【答案】
【解析】函数
是函数是极大值点则
或
当时的极小值为故答案为:
2.(2023全国高三专题练习)已知函数,设是的极值点,则a=___,的单调增区间为___.
【答案】
【解析】
由题意可得:
是的极值点
即
令,可得
的单调递增区间为
3.(2023河南省实验中学高二月考)函数在处有极值,则的值为( )
A. B. C. D.
【答案】D
【解析】由得,选D.
点睛:函数在点处由极值,则必有但要注意不一定是的极值点.
题型三:根据极值、极值点求参数的范围
【例1】(2022·四川绵阳·二模(文))若是函数的极大值点,则实数的取值范围是( )
A. B. C. D.
【答案】A
【解析】
【分析】
求出,分,,,分别讨论出函数的单调区间,从而可得其极值情况,从而得出答案.
【详解】
,
若时,当时,;当时,;
则在上单调递减;在上单调递增.
所以当时,取得极小值,与条件不符合,故满足题意.
当时,由可得或;由可得
所以在上单调递增;在上单调递减,在上单调递增.
所以当时,取得极大值,满足条件.
当时,由可得或;由可得
所以在上单调递增;在上单调递减,在上单调递增.
所以当时,取得极小值,不满足条件.
当时,在上恒成立,即在上单调递增.
此时无极值.
综上所述:满足条件
故选:A
【例2】(2022·河南·高三阶段练习(文))若函数在上无极值,则实数的取值范围( )
A. B. C. D.
【答案】D
【解析】
【分析】
求,由分析可得恒成立,利用即可求得实数的取值范围.
【详解】
由可得
,
恒成立,为开口向上的抛物线,
若函数在上无极值,
则恒成立,所以,
解得:,
所以实数的取值范围为,
故选:D.
【例3】(2022·全国·高三专题练习)函数在内有极值,则实数的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】
由可导函数在开区间内有极值的充要条件即可作答.
【详解】
由得,,
因函数在内有极值,则时,有解,
即在时,函数与直线y=a有公共点,
而,即在上单调递减,,则,显然在零点左右两侧异号,
所以实数的取值范围是.
故选:C
【点睛】
结论点睛:可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.
【例4】(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数,若是的极小值点,则实数的取值范围是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据导函数的正负,对分类讨论,判断极值点,即可求解.
【详解】
由得,令,
若,则 ,此时在单调递增,在 单调递减,这与是的极小值点矛盾,故舍去.
若,可知是的极大值点,故不符合题意.
若,,此时在单调递增,在 单调递减,可知是的极大值点,故不符合题意.
当 ,,,此时在单调递增,在 单调递减,可知是的极小值点,符合题意.
若,在定义域内单调递增,无极值,不符合题意,舍去.
综上可知:
故选:B
【例5】(2022·吉林长春·模拟预测(文))已知函数,.
(1)当时,过做函数的切线,求切线方程;
(2)若函数存在极值,求极值的取值范围.
【答案】(1),(2)
【解析】
【分析】
(1)设切点,再根据导数的几何意义求解即可;
(2)求导分析导函数为0时的情况,设极值点为得到,代入极值再构造函数,求导分析单调性与取值范围即可
(1)
由题,当时,,,
设切点为,则,
故切线方程为,
又切线过,故,即,
设,,则,
故为增函数.又,
故有唯一解,
故切点为,斜率为1,故切线方程为,即;
(2)
因为,为减函数,故若函数存在极值,
则在区间上有唯一零点设为,
则,即,
故极值,
设,,则,
故为增函数,故,故,即,
故极值的取值范围
【点睛】
本题主要考查了过点的切线问题,同时也考查了利用导数研究函数的极值问题,需要根据题意设极值点,得到极值点满足的关系,再代入极值构造函数分析,属于难题
【例6】(2022·天津·耀华中学二模)已知函数.
(1)若,求函数的单调区间;
(2)若存在两个极小值点,求实数的取值范围.
【答案】(1)递减区间为,递增区间为,(2)
【解析】
【分析】
(1)当时,求得,令,利用导数求得,进而求得函数的单调区间;
(2)求得,令,结合单调性得到,进而得到,分和,两种情况分类讨论,结合单调性与极值点的概念,即可求解.
(1)
解:当时,函数,
可得,
令,可得,所以函数单调递增,
因为,所以,
当时,,单调递减;
当时,,单调递增,
即函数的单调递减区间为,单调递增区间为.
(2)
解:由函数,
可得,
令,可得,
所以函数在上单调递增,在上单调递减,所以,
当时,可得,所以,
①当时,,此时当时,,单调递减;
当时,,单调递增,
所以函数的极小值为,无极大值;
②当时,,
又由在上单调递增,所以在上有唯一的零点,且,
因为当时,令,可得,
又因为,所以,即,所以,
所以,,
因为在上单调递减,所以在上有唯一的零点,且,
所以当时,,单调递减;
当时,,单调递增;
当时,,单调递减;
当时,,单调递增,
所以函数有两个极小值点,故实数的取值范围为.
【题型专练】
1.(2022贵州遵义·高三)若函数无极值点则实数a的取值范围是( )
A. B.
C. D.
【答案】B
【解析】
,
,
由函数无极值点知,
至多1个实数根,
,
解得,
实数a的取值范围是,
故选:B
2.(2022湖南湘潭·高三月考(理))已知函数有两个极值点,则a的取值范围是( )
A. B. C. D.
【答案】D
【解析】
因为有两个极值点,所以有两个不同实数根,所以有两个不同实数根,
所以有两个不同实数根,显然,
所以有两个不同实数根,记,,
当时,当时,
所以在上单调递增,在上单调递减,所以,
又因为时,;当时,;当时,,
所以当有两个不同实数根时 ,
所以,所以,
故选:D.
3.若函数有两个不同的极值点,则实数的取值范围是( )
A. B. C. D.
【答案】D
【解析】
【分析】
求出函数的导数,由导函数有两个零点可得实数的取值范围.
【详解】
∵有两个不同的极值点,
∴在有2个不同的零点,
∴在有2个不同的零点,
∴,解得.
故选:D.
4.(2020·辽宁高三月考)已知函数有两个不同的极值点,,则a的取值范围___________;且不等式恒成立,则实数的取值范围___________.
【答案】
【解析】
,
因为函数有两个不同的极值点,
所以方程有两个不相等的正实数根,
于是有:,解得.
,
设,
,故在上单调递增,
故,所以.
因此的取值范围是
故答案为:;
5.(2022·江苏南通·高二期末)若x=a是函数的极大值点,则a的取值范围是( )
A. B. C. D.
【答案】A
【解析】
【分析】
求导后,得导函数的零点,比较两数的大小,分别判断在两侧的导数符号,确定函数单调性,从而确定是否在处取到极大值,即可求得的范围.
【详解】
解:,
令,得:
当 ,即
此时在区间单调递增,上单调递减,上单调递增,符合x=a是函数的极大值点,
反之,当 ,即,此时在区间单调递增,上单调递减,上单调递增,x=a是函数的极小值点,不符合题意;
当 ,即,恒成立,函数在上单调递增,无极值点.
综上得:.
故选:A.
6.(2020·江苏盐城·高三期中)若函数在上存在两个极值点,则的取值范围是_______.
【答案】
【解析】
因为,
所以,
设,
因为函数在上存在两个极值点,
所以在上存在两个零点,
所以在上存在两个零点,设为且,
所以根据韦达定理有:,
故
,
因为,
所以,
,
由于,
所以.
故答案为:.
7.(2018年北京高考题)设函数。
(1)若曲线在点处的切线斜率为0,求;
(2)讨论的单调性,若在处取得极小值,求的取值范围。
【解析】:(1),,得;
(2)=,
①当时,导数为一次函数型,当时,单调递增,当时,单调递减。 是极大值 ;
②当时,开口向上,两根分别为,1;两根大小不确定,
i.当时,,当,时,单调递增,当时,单调递减,是极小值;
ii.当时,单调递增,无极值 ;
iii.当时,,当,时,单调递增,当时,单调递
减,是极大值;
③当时,开口向下,,当,时,单调递减,当时,单
调递增,是极大值;综上可知。
题型四:利用导数求函数的最值(不含参)
【方法总结】
导数求函数的极值与闭区间上的最值,设函数在上连续,在内可导,求在上的最大值和最小值的步骤如下:
①求函数在内的极值;
②将函数)的各极值与端点处的函数值比较,其中最大的一个为最大值,最小的一个为最小值.
【例1】(2022江苏单元测试)函数在[0,2]上的最大值是( )
A. B. C.0 D.
【答案】A
【解析】由,得,
当时,,当时,,
所以在上递增,在上递减,
所以,故选:A
【例2】(2022全国课时练习)函数y=的最大值为( )
A.e-1 B.e C.e2 D.10
【答案】A
【解析】令 当时, ;当 时 ,
所以函数得极大值为 ,因为在定义域内只有一个极值,所以故选:A.
【例3】函数在上的最大值为( )
A. B.π C. D.
【答案】B
【解析】
【分析】
利用导数研究的单调性,进而求其最大值.
【详解】
由题意,在上,即单调递增,
∴.
故选:B
【例4】(2020·北京高三期中)已知函数
(1)求不等式的解集;
(2)求函数在区间上的最大值和最小值.
【答案】(1)或;(2)最小值,最大值.
【解析】
(1)因为,
由,得.
所以或.
所以不等式的解集为或;
(2)由得:.
令,得,或(舍).
与在区间[0,2]上的情况如下:
x
0
(0,1)
1
(1,2)
2
-
0
+
0
减
增
所以当时,取得最小值;
当时,取得最大值.
【例5】(2022·全国·高三专题练习)函数的最小值为______.
【答案】1
【解析】
【分析】
先证明出成立,对原函数进行同构构造后直接求解.
【详解】
记.
因为.令,解得:;令,解得:;
所以在上单减,在上单增,所以.
所以,即.
所以,当且仅当时等号成立.
记.
因为在上单增,在上单增,所以在上单增.
又,,
所以有且只有一个实根.
而存在唯一一个使得.
即存在唯一一个使得.
所以函数的最小值为1.
故答案为:1
【题型专练】
1.(2022·河南郑州·三模(文))在区间上的最小值是( )
A. B.1 C. D.
【答案】B
【解析】
【分析】
求导函数,分析其导函数的符号,得出原函数的单调性,从而可求得最小值.
【详解】
因为,所以,令,解得,
所以当时,,函数单调递减,当时,,函数单调递增,
所以函数在上的最小值为,
故选:B.
2.(2022·全国·高三专题练习)函数的最大值为( )
A. B. C. D.
【答案】B
【解析】
【分析】
先对函数求导,求出函数的单调区间,进而可求出函数的最大值
【详解】
解:由,得,
当时,,当时,,
所以函数在上递减,在上递增,
因为,
所以函数的最大值为,
故选:B
3.函数在(0,e]上的最大值为( )
A.-1 B.1 C.0 D.e
【答案】A
【解析】
【分析】
对函数求导,然后求出函数的单调区间,从而可求出函数的最大值
【详解】
由,得,
当时,,当,,
所以在上单调递增,在上单调递减,
所以当时,取得最大值,
故选:A
4.已知函数,,则函数的最大值为( )
A.0 B.
C. D.
【答案】C
【解析】
【分析】
根据函数的导函数的正负性判断函数在已知区间的单调性,结合余弦函数的性质进行求解即可.
【详解】
∵,∴当时,单调递增,
当时, 单调递减,
∴.
故选:C.
题型五:根据最值求参数
【例1】(2021·南昌市新建一中)已知函数在处取得极小值,则在的最大值为( )
A. B. C. D.
【答案】B
【解析】,则,
由题意可得,解得,则,
,令,可得或,列表如下:
极大值
极小值
所以,函数的极大值为,极小值为,
又,,
,则,
所以,.
故选:B.
【例2】(2020·陕西省子洲中学)若函数在[0,3]上的最大值为5,则m=( )
A.3 B.4 C.5 D.8
【答案】C
【解析】,
当时,,函数单调递减,当时,,函数单调递增,
当时,,当时,,
则函数在上的最大值为,则.
故选:C.
【例3】(2021·江苏测试)已知函数在上的最大值为,则a的值为( )
A. B. C. D.
【答案】A
【解析】由,
得,
当时,若,则单调递减,
若,则单调递增,
故当时,函数有最大值,
解得,不符合题意.
当时,函数在上单调递减,最大值为,不符合题意.
当时,函数在上单调递减.此时最大值为,
解得,符合题意.
故a的值为.
故选:A.
【例4】【2019年高考全国Ⅲ卷】已知函数.
(1)讨论的单调性;
(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.
【答案】(1)见解析;(2)或.
【解析】(1).令,得x=0或.
若a>0,则当时,;当时,.故在单调递增,在单调递减;
若a=0,在单调递增;
若a<0,则当时,;当时,.故在单调递增,在单调递减.
(2)满足题设条件的a,b存在.
(i)当a≤0时,由(1)知,在[0,1]单调递增,所以在区间[0,l]的最小值为,最大值为.此时a,b满足题设条件当且仅当,,即a=0,.
(ii)当a≥3时,由(1)知,在[0,1]单调递减,所以在区间[0,1]的最大值为,最小值为.此时a,b满足题设条件当且仅当,b=1,即a=4,b=1.
(iii)当0 若,b=1,则,与0 若,,则或或a=0,与0 综上,当且仅当a=0,或a=4,b=1时,在[0,1]的最小值为-1,最大值为1.
题型五:根据最值求参数范围
【例1】(2020·河北省石家庄二中高二月考)函数在区间上有最大值,则的取值范围是( )
A. B. C. D.
【答案】D
【解析】由于,故函数在和上递增,在上递减,,画出函数图像如下图所示,由于函数在区间上有最大值,根据图像可知,即,故选D.
【例2】(2020·通榆县第一中学校高三月考(文))若函数在区间上有最大值,则实数a的取值范围是______.
【答案】
【解析】
由题意得:,
令解得;令解得或,
所以函数在上是增函数,在上是减函数,在上是增函数,
故函数在处取到极大值2,
所以极大值必是区间上的最大值,
∴,
解得.检验满足题意
故答案为:.
【例3】(2020·四川省阆中东风中学校高三月考(文))已知函数,其中为常数,且.
(1)当时,求的单调区间;
(2)若在处取得极值,且在的最大值为1,求的值.
【答案】(1)在和上单调递增,在上单调递减;(2)或.
【解析】
(1),,令,得或1,则列表如下:
1
+
0
_
0
+
增
极大值
减
极小值
增
所以在和上单调递增,在上单调递减.
(2)∵,
令,,,
因为在处取得极值,
所以,
①时,在上单调递增,在上单调递减,
所以在区间上的最大值为,令,解得;
②当,;
(i)当时,在上单调递增,上单调递减,上单调递增,
所以最大值1可能在或处取得,而,
∴,
∴,
(ii)当时,在区间上单调递增;上单调递减,上单调递增,
所以最大值1可能在或处取得而,
所以,解得,与矛盾;
(iii)当时,在区间上单调递增,在单调递减,
所以最大值1可能在处取得,而,矛盾,
综上所述,或
【例4】(2022·山西运城·模拟预测(理))已知函数,若函数在上存在最小值.则实数的取值范围是________.
【答案】
【解析】
【分析】
先利用导数判断出函数的极值点,建立不等式,即可求出的取值范围.
【详解】
,,
当时,,单调递减;当或时,,单调递增,
∴在处取得极小值,在处取得极大值.
令,解得或,
又∵函数在上存在最小值,且为开区间,
所以,解得.
即的取值范围是.
故答案为:.
【例5】(2022·浙江湖州·高三期末)若函数存在最小值,则实数a的取值范围是___________.
【答案】
【解析】
【分析】
对函数求导,可知当时,函数在上单调递增,无最小值;当时,有两个不等实根,由此可知函数的单调性,再根据函数图象趋势,结合极小值情况,进而确定最小值,由此即可求出结果.
【详解】
因为函数,所以,
当时,, ,又,
所以,所以函数在上单调递增,此时无最小值;
当时,则有两个不等实根,
设两个不等实根,
则,
所以函数在区间和上单调递增,在区间上单调递减;
所以是函数的极小值点,
又时,,所以,
所以要使得函数存在最小值,则函数的最小值只能为,且,
即,所以,
即,解得,所以.
故答案为:.
【题型专练】
1.(2022·陕西·模拟预测(理))若函数在区间上有最大值,则实数的取值范围是_________.
【答案】
【解析】
【分析】
由导函数求得极大值,利用极大值点在区间上,且的极大值可得参数范围.
【详解】
,
或时,,时,,
所以在和上都递增,在上递减,
,
在区间上有最大值,则,解得.
故答案为:.
2.(2021·全国课时练习)已知函数在区间上存在最小值,则a的取值范围为_______.
【答案】
【解析】,时,或,
当或时,,当时,,
所以函数的单调递增区间是和,函数的单调递减区间是,
所以函数的极大值点是,极小值点是0,且,
那么当,解得或,
所以函数在区间上存在最小值,
则 ,解得:.
故答案为:.
3.(2021·江苏)若函数在区间上存在最小值,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】,,
令,解得或;令,解得.
故的单调递增区间为和,单调递减区间为,
所以,函数在处取得极小值,
由于函数在区间内取到最小值,则,
由可得,可得,
即,解得.
因此,实数的取值范围是.故选:C.
4.(2022北京市第十三中学高三开学考试)已知函数.
(1)函数的最大值等于________;
(2)若对任意,都有成立,则实数a的最小值是________.
【答案】 1
【解析】
(1)函数定义域是,,
时,,递增,时,,递减,
∴时,取得极大值也是最大值;
(2)若对任意,都有成立,
等价于当时,,
由(1)当时,,且,满足题意;
当,在上递增,,在递减,,
只要即可,∴,
综上,的最小值是1..
故答案为:;1.
5.(2022重庆高二期末)已知函数,若关于的方程恰有两个不同的实数根和,则的取值范围是______,的最大值为_____.
【答案】
【解析】
作出函数的图像如下图所示,要使关于的方程恰有两个不同的实数根和,则需,解得,
不妨设,则,令,则,所以,
令,则,
所以当时,,单调递增,当时,,单调递减,
所以当时,取得最大值,所以的最大值为,
故答案为:;.
6.(2022宁夏石嘴山市第一中学高三月考(文))设函数.
①若,则的最大值为____________________;
②若无最大值,则实数的取值范围是_________________.
【答案】2
【解析】
①若,则,时的值域为,
时,则
故时,单调递增;时,单调递减,
,故值域为,
综上,值域为,最大值为2;
②函数,故时的值域为,所以要使无最大值,则需时的最大值小于.
由,知,
当时在上单调递增,,故解得;
当时或,故且,无解,
综上,要使无最大值,则.
故答案为:2;.
新高考数学二轮复习导数培优专题10 含参函数的极值、最值讨论(含解析): 这是一份新高考数学二轮复习导数培优专题10 含参函数的极值、最值讨论(含解析),共21页。
新高考数学二轮复习导数培优专题07 函数单调性、极值、最值综合运用(含解析): 这是一份新高考数学二轮复习导数培优专题07 函数单调性、极值、最值综合运用(含解析),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高考数学二轮复习核心专题讲练:函数与导数第3讲 利用导数研究函数的单调性、极值、最值(含解析): 这是一份高考数学二轮复习核心专题讲练:函数与导数第3讲 利用导数研究函数的单调性、极值、最值(含解析),共45页。试卷主要包含了导数的几何意义,利用导数研究函数的单调性,函数的极值,函数的最大值,函数的最值与极值的关系等内容,欢迎下载使用。