终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    58中考冲刺:创新、开放与探究型问题(基础)

    立即下载
    加入资料篮
    58中考冲刺:创新、开放与探究型问题(基础)第1页
    58中考冲刺:创新、开放与探究型问题(基础)第2页
    58中考冲刺:创新、开放与探究型问题(基础)第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    58中考冲刺:创新、开放与探究型问题(基础)

    展开

    这是一份58中考冲刺:创新、开放与探究型问题(基础),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    中考冲刺:创新、开放与探究型问题(基础)
      一、选择题
      1.若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是(  )
      A.0.88   B.0.89    C.0.90   D.0.91

      2.如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有(   )
                       
      A.1个   B.2个   C.3个   D.4个

      3.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为(  )
                 
      A.226    B.181    C.141    D.106

      二、填空题
      4.(2015秋•淮安校级期中)电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P0点,BP0=4.第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2 跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第2015次落点为P2016,则P3与P2016之间的距离为______.
                       
      5.下图为手的示意图,在各个手指间标记字母A,B,C,D,请你按图中箭头所指方向(如A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).
                        
      6. (1)如图(a),∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.
      (2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC≌△ADE.
                  

      三、解答题
      7.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(点E不与B,C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
                      
      (1)求证:四边形EFOG的周长等于2OB;
      (2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.
      8.如图所示,平面直角坐标系内有两条直线,,直线的解析式为.如果将坐标纸折叠,使直线与重合,此时点(-2,0)与点(0,2)也重合.
                       
      (1)求直线的解析式;
      (2)设直线与相交于点M.问:是否存在这样的直线,使得如果将坐标纸沿直线折叠,点M恰好落在x轴上?若存在,求出直线的解析式;若不存在,请说明理由.
      9.(2015•黄陂区校级模拟)正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.
      (1)如图①,求证:AE=AF;
      (2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG;
      (3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由.
             
      10. (2016•天门)如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.
      (1)请直接写出∠COD的度数;
      (2)求AC•BD的值;
      (3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.
                 
    答案与解析

    【答案与解析】  一、选择题
      1.【答案】A;
       【解析】
       不是“连加进位数”的有“0,1,2,10,11,12,20,21,22,30,31,32”共有12个.
       ∴P(取到“连加进位数”)=.
      2.【答案】D;
       【解析】如图,①过圆点O作AB的垂线交和于M1,M2.
                       
           ②以B为圆心AB为半径作弧交圆O于M3.
           ③以A为圆心,AB为半径弧作弧交圆O于M4.
           则M1,M2,M3,M4都满足要求.
      3.【答案】C;
       【解析】设第n个图形中棋子的颗数为an(n为正整数),
           观察,发现规律:a1=1,a2=1+3+2=6,a3=1+3+5+4+3=16,…,
           ∴an=1+3+5+…+(2n﹣1)+(2n﹣2)+…+n=n2+=n2﹣n+1,
           当n=8时,a8=×82﹣×8+1=141.
      二、填空题
      4.【答案】1.
       【解析】
       ∵BC=10,BP0=4,知CP0=6,
       ∴CP1=6.
       ∵AC=9,
       ∴AP2=AP1=3.
       ∵AB=8,
       ∴BP3=BP2=5.
       ∴CP4=CP3=5,
       ∴AP4=4.
       ∴AP5=AP4=4,
       ∴BP5=4.
       ∴BP6=BP5=4.
       此时P6与P0重合,即经过6次跳,电子跳蚤回到起跳点.
       2016÷6=336,即P2016与P0重合,
       ∴P3与P2016之间的距离为P3P0=1.故答案为:1.
      5.【答案】B;  603;  6n+3.
       【解析】
       由题意知A→B→C→D→C→B→A→B→C→D→C→B→A→B…,每隔6个数重复一次“A→B→C→D→C→B→”,
       所以,当数到12时对应的字母是B;当字母C第201次出现时,恰好数到的数是201×3=603;当字母C第2n+1次出现时(n为正整数),恰好数到的数是(2n+1)×3=6n+3.
      6.【答案】答案不唯一.(1)如图(a)中∠A=∠D,或AB=DC;(2)图(b)中∠D=∠B,或等.
                 
      三、解答题
      7.【答案与解析】
      (1)证明:∵四边形ABCD是梯形,AD∥BC,AB=CD,
           ∴∠ABC=∠DCB.
           又∵BC=CB,AB=DC,
           ∴△ABC≌△DCB.
           ∴∠1=∠2.
           又∵ GE∥AC,∴∠2=∠3.
           ∴∠1=∠3.
           ∴EG=BG.
           ∵EG∥OC,EF∥OB,
           ∴四边形EGOF是平行四边形.
           ∴EG=OF,EF=OG.
           ∴四边形EGOF的周长=2(OG+GE)=2(OG+GB)=2OB.
               
      (2)方法1:如图乙,已知矩形ABCD中,对角线AC,BD相交于点O,E为BC上一个动点(点E不与B,C两点重合),
        EF∥BD,交AC于点F,EG∥AC交BD于点G.
        求证:四边形EFOG的周长等于2OB.图略.
        方法2:如图丙,已知正方形ABCD中,……其余略.
      8. 【答案与解析】 
      解:(1)直线与y轴交点的坐标为(0,1).
        由题意,直线与关于直线对称,直线与x轴交点的坐标为(-1,0).
        又∵直线与直线的交点为(-3,3),
        ∴直线过点(-1,0)和(3,3).
        设直线的解析式为y=kx+b.则有
         解得
        所求直线的解析式为.
      (2)∵直线与直线互相垂直,且点M(-3,3)在直线上,
        ∴如果将坐标纸沿直线折叠,要使点M落在x轴上,那么点M必须与坐标原点O重合,此时直线过线段OM的
        中点.
        将,代入y=x+t,解得t=3.
        ∴直线l的解析式为y=x+3.
      9.【答案与解析】
      解:(1)如图①,∵四边形ABCD是正方形,
           ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.
           ∵∠EAF=90°,
           ∴∠EAF=∠BAD,
           ∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,
           ∴∠BAE=∠DAF.
           在△ABE和△ADF中
           ,
           ∴△ABE≌△ADF(ASA)
           ∴AE=AF;
        (2)如图②,连接AG,
           ∵∠MAN=90°,∠M=45°,
           ∴∠N=∠M=45°,
           ∴AM=AN.
           ∵点G是斜边MN的中点,
           ∴∠EAG=∠NAG=45°.
           ∴∠EAB+∠DAG=45°.
           ∵△ABE≌△ADF,
           ∴∠BAE=∠DAF,AE=AF,
           ∴∠DAF+∠DAG=45°,
           即∠GAF=45°,
           ∴∠EAG=∠FAG.
           在△AGE和AGF中,
           ,
           ∴△AGE≌AGF(SAS),
           ∴EG=GF.
           ∵GF=GD+DF,
           ∴GF=GD+BE,
           ∴EG=BE+DG;
        (3)G不一定是边CD的中点.
           理由:设AB=6k,GF=5k,BE=x,
           ∴CE=6k﹣x,EG=5k,CF=CD+DF=6k+x,
           ∴CG=CF﹣GF=k+x,
           在Rt△ECG中,由勾股定理,得
           (6k﹣x)2+(k+x)2=(5k)2,
           解得:x1=2k,x2=3k,
           ∴CG=4k或3k.
           ∴点G不一定是边CD的中点.
      10.【答案与解析】
      解:(1)∠COD=90°.
           理由:如图①中,∵AB是直径,AM、BN是切线,
           ∴AM⊥AB,BN⊥AB,
           ∴AM∥BN,
           ∵CA、CP是切线,
           ∴∠ACO=∠OCP,同理∠ODP=∠ODB,
           ∵∠ACD+∠BDC=180°,
           ∴2∠OCD+2∠ODC=180°,
           ∴∠OCD+∠ODC=90°,
           ∴∠COD=90°.
        (2)如图①中,∵AB是直径,AM、BN是切线,
           ∴∠A=∠B=90°,
           ∴∠ACO+∠AOC=90°,
           ∵∠COD=90°,
           ∴∠BOD+∠AOC=90°,
           ∴∠ACO=∠BOD,
           ∴RT△AOC∽RT△BDO,
           ∴=,
           即AC•BD=AO•BO,
           ∵AB=6,
           ∴AO=BO=3,
           ∴AC•BD=9.
        (3)△PQD能与△ACQ相似.
           ∵CA、CP是⊙O切线,
           ∴AC=CP,∠1=∠2,
           ∵DB、DP是⊙O切线,
           ∴DB=DP,∠B=∠OPD=90°,OD=OD,
           ∴RT△ODB≌RT△ODP,
           ∴∠3=∠4,
           ①如图②中,当△PQD∽△ACO时,∠5=∠1,
           ∵∠ACO=∠BOD,即∠1=∠3,
           ∴∠5=∠4,
           ∴DQ=DO,
           ∴∠PDO=∠PDQ,
           ∴△DCQ≌△DCO,
           ∴∠DCQ=∠2,
           ∵∠1+∠2+∠DCQ=180°,
           ∴∠1=60°=∠3,
           在RT△ACO,RT△BDO中,分别求得AC=,BD=3,
           ∴AC:BD=1:3.
           ②如图②中,当△PQD∽△AOC时,∠6=∠1,
           ∵∠2=∠1,
           ∴∠6=∠2,
           ∴CO∥QD,
           ∴∠1=∠CQD,
           ∴∠6=∠CQD,
           ∴CQ=CD,
           ∵S△CDQ=•CD•PQ=•CQ•AB,
           ∴PQ=AB=6,
           ∵CO∥QD,
           ∴=,即=,
           ∴AC:BD=1:2.

    相关试卷

    57中考冲刺:创新、开放与探究型问题--知识讲解(提高):

    这是一份57中考冲刺:创新、开放与探究型问题--知识讲解(提高),共12页。

    56中考冲刺:创新、开放与探究型问题--知识讲解(基础):

    这是一份56中考冲刺:创新、开放与探究型问题--知识讲解(基础),共9页。

    中考冲刺:创新、开放与探究型问题--巩固练习(提高):

    这是一份中考冲刺:创新、开放与探究型问题--巩固练习(提高),共11页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map