湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-03解答题①
展开这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-03解答题①,共17页。试卷主要包含了解答题等内容,欢迎下载使用。
湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-03解答题①
一、解答题
1.(2022·湖北鄂州·统考中考真题)先化简,再求值:﹣,其中a=3.
2.(2022·湖北鄂州·统考中考真题).为庆祝中国共产主义青年团成立100周年,某校举行了“青年大学习,强国有我”知识竞赛活动.李老师赛后随机抽取了部分学生的成绩(单位:分,均为整数),按成绩划分为A、B、C、D四个等级,并制作了如下统计图表(部分信息未给出):
等级
成绩x/分
人数
A
90≤x≤100
15
B
80≤x<90
a
C
70≤x<80
18
D
x<70
7
(1)表中a= ,C等级对应的圆心角度数为 ;
(2)若全校共有600名学生参加了此次竞赛,成绩A等级的为优秀,则估计该校成绩为A等级的学生共有多少人?
(3)若A等级15名学生中有3人满分,设这3名学生分别为T1,T2,T3,从其中随机抽取2人参加市级决赛,请用列表或树状图的方法求出恰好抽到T1,T2的概率.
3.(2022·湖北鄂州·统考中考真题)如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠CDF=∠BDC、∠DCF=∠ACD.
(1)求证:DF=CF;
(2)若∠CDF=60°,DF=6,求矩形ABCD的面积.
4.(2022·湖北鄂州·统考中考真题)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°,若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:
(1)两位市民甲、乙之间的距离CD;
(2)此时飞机的高度AB,(结果保留根号)
5.(2021·湖北鄂州·统考中考真题)先化简,再求值:,其中.
6.(2021·湖北鄂州·统考中考真题)为了引导青少年学党史、颂党恩、跟党走,某中学举行了“南献礼建党百年”党史知识竞赛活动.胡老师从全校学生的答卷中随机地抽取了部分学生的答卷进行了统计分析(卷面满分100分,且得分均为不小于60的整数)﹐并将竞赛成绩划分为四个等级:基本合格().合格()、良好()、优秀(),制作了如下统计图(部分信息未给出):
所抽取成绩的条形统计图
所抽取成绩的扇形统计图
根据图中提供的信息解决下列问题:
(1)胡老师共抽取了____________名学生的成绩进行统计分析,扇形统计图中“基本合格”等级对应的扇形圆心角度数为____________﹐请补全条形统计图.
(2)现从“优秀”等级的甲、乙、丙、丁四名学生中任选两人参加全市党史知识竞赛活动,请用画树形图的方法求甲学生被选到的概率.
7.(2021·湖北鄂州·统考中考真题)如图,在中,点、分别在边、上,且.
(1)探究四边形的形状,并说明理由;
(2)连接,分别交、于点、,连接交于点.若,,求的长.
8.(2021·湖北鄂州·统考中考真题)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由地出发,途经地去往地,如图.当他由地出发时,发现他的北偏东方向有一信号发射塔.他由地沿正东方向骑行km到达地,此时发现信号塔在他的北偏东方向,然后他由地沿北偏东方向骑行12km到达地.
(1)求地与信号发射塔之间的距离;
(2)求地与信号发射塔之间的距离.(计算结果保留根号)
9.(2023·湖北鄂州·统考中考真题)先化简,再求值:,其中.
10.(2023·湖北鄂州·统考中考真题)如图,点E是矩形的边上的一点,且.
(1)尺规作图(请用铅笔):作的平分线,交的延长线于点F,连接.(保留作图痕迹,不写作法);
(2)试判断四边形的形状,并说明理由.
11.(2023·湖北鄂州·统考中考真题)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有________名学生;
(2)补全折线统计图;
(3)D所对应扇形圆心角的大小为________;
(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
12.(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为;接着他沿自动扶梯到达扶梯顶端D点,测得点A和点D的水平距离为15米,且;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,,).
(1)求自动扶梯的长度;
(2)求大型条幅的长度.(结果保留根号)
参考答案:
1.,2
【分析】先根据同分母分式的减法计算法则化简,然后代值计算即可.
【详解】解:
,
当时,原式.
【点睛】本题主要考查了分式的化简求值,熟知同分母分式的减法计算法则是解题的关键.
2.(1)60;108°;
(2)150
(3)树状图见解析,
【分析】(1)先根据A等级的人数和人数占比求出此次抽取的学生人数,即可求出a的值;用360度乘以C等级的人数占比即可求出C等级对应的圆心角度数;
(2)用600乘以样本中A等级的人数占比即可得到答案;
(3)先画树状图得到所有的等可能性的结果数,然后找到符合题意的结果数,最后依据概率计算公式求解即可.
【详解】(1)解:人,
∴此次抽取的学生人数为60人,
∴,
∴C等级对应的圆心角度数为,
故答案为:60;108°;
(2)解:人,
∴估计该校成绩为A等级的学生共有150人,
答:估计该校成绩为A等级的学生共有150人;
(3)解:画树状图如下:
由树状图可知一共有6种等可能性的结果数,其中抽到T1,T2的结果数有2种,
∴恰好抽到T1,T2的概率为.
【点睛】本题主要考查了频数分布表,扇形统计图,用样本估计总体,树状图或列表法求解概率,正确读懂统计图、统计表是解题的关键.
3.(1)见解析
(2)
【分析】(1)先证明△DCF≌△DCO得到DF=DO,CF=CO,再由矩形的性质证明OC=OD,即可证明DF=CF=OC=OD;
(2)由全等三角形的性质得到∠CDO=∠CDF=60°,OD=DF=6,即可证明△OCD是等边三角形,得到CD=OD=6,然后解直角三角形BCD求出BC的长即可得到答案.
【详解】(1)解:在△DCF和△DCO中,
,
∴△DCF≌△DCO(ASA),
∴DF=DO,CF=CO,
∵四边形ABCD是矩形,
∴,
∴DF=CF=OC=OD;
(2)解:∵△DCF≌△DCO,
∴∠CDO=∠CDF=60°,OD=DF=6,
又∵OD=OC,
∴△OCD是等边三角形,
∴CD=OD=6,
∵四边形ABCD是矩形,
∴∠BCD=90°,
∴,
∴.
【点睛】本题主要考查了矩形的性质,解直角三角形,等边三角形的性质与判定,全等三角形的性质与判定,熟练掌握矩形的性质是解题的关键.
4.(1)米
(2)米
【分析】(1)先根据斜坡CF的坡比=1:3,求出CG的长,然后利用勾股定理求出CD的长即可;
(2)如图所示,过点D作DH⊥AB于H,则四边形BHDG是矩形,BH=DG=30米,DH=BG,证明AB=BC,设AB=BC=x米,则米,米,解直角三角形得到据此求解即可.
【详解】(1)解:∵斜坡CF的坡比=1:3,铅垂高度DG=30米,
∴,
∴米,
∴米;
(2)解:如图所示,过点D作DH⊥AB于H,则四边形BHDG是矩形,
∴BH=DG=30米,DH=BG,
∵∠ABC=90°,∠ACB=45°,
∴△ABC是等腰直角三角形,
∴AB=BC,
设AB=BC=x米,则米,米,
在Rt△ADH中,,
∴,
解得,
∴米.
【点睛】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,勾股定理,正确理解题意作出辅助线是解题的关键.
5.,
【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.
【详解】解:原式
,
当时,原式.
【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.
6.(1)40,,见解析;(2)
【分析】(1)根据“良好”等级的频数和所占的百分比,可以求得本次抽取的人数,根据频数分布直方图中的数据,可以计算出扇形统计图中“基本合格”等级对应的扇形圆心角度数,
然后再根据频数分布直方图中的数据,即可计算出成绩为合格的学生的频数,然后即可将频数分布直方图补充完整;
(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,根据概率公式求解即可.
【详解】解:(1)本次抽取的学生有:20÷50%=40(人),
扇形统计图中“基本合格”等级对应的扇形圆心角度数为360°× =36°,
测试成绩为“合格”的学生有:40-4-20-4=12(人),
补全的频数分布直方图如图所示:
故答案为:40,36°;
(2)画树状图如下:
共有12种等可能的结果数,其中甲学生被选到的结果数有6种,
∴.
【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.熟练掌握统计图的相关知识及计算方法并能利用树状图或列表法表示出所有等可能的结果是解题的关键.
7.(1)平行四边形,见解析;(2)16
【分析】(1)利用平行四边形的判定定理,两组对边分别平行是平行四边形即可证明;
(2)根据,找到边与边的等量关系,再利用三角形相似,建立等式进行求解即可.
【详解】(1)四边形为平行四边形.
理由如下:
∵四边形为平行四边形
∴
∵
∴
∵四边形为平行四边形
∴
∴
∴
∵
∴四边形为平行四边形
(2)设,∵
∴,
∵四边形为平行四边形
∴,,
∵
,
∴
∴
∵
∴.
【点睛】本题考查了平行四边形的判定定理、相似三角形的判定定理,解题的关键是:熟练掌握相关定理,能进行相关的证明.
8.(1);(2)
【分析】(1)过点作于点,分别求出即可求出;
(2)过点作于点,解即可求出.
【详解】(1)依题意知:,,
过点作于点,
∵,
∴
∵,
∴
∵
∴
∴
(2)∵,
∴
过点作于
∵,
∴
∵
∴,
∵
∴
∴
【点睛】本题考查解直角三角形应用,勾股定理的应用,掌握锐角三角函数的定义与勾股定理性质是解题关键.
9.,.
【分析】根据题意,先进行同分母分式加减运算,再将代入即可得解.
【详解】解:原式
,
当时,原式.
【点睛】本题主要考查了分式的化简求值,熟练掌握分式的加减,约分等相关计算法则是解决本题的关键.
10.(1)见解析
(2)四边形是菱形,理由见解析
【分析】(1)根据题意结合尺规作角平分线的方法作图即可;
(2)根据矩形的性质和平行线的性质得出,结合角平分线的定义可得,则,然后根据平行四边形和菱形的判定定理得出结论.
【详解】(1)解:如图所示:
(2)四边形是菱形;
理由:∵矩形中,,
∴,
∵平分,
∴,
∴,
∴,
∵,
∴,
∵,
∴四边形是平行四边形,
又∵,
∴平行四边形是菱形.
【点睛】本题主要考查了尺规作角平分线,矩形的性质,平行线的性质,等腰三角形的判定,平行四边形的判定以及菱形的判定等知识,熟练掌握相关判定定理和性质定理是解题的关键.
11.(1)50;(2)见解析;(3)108°;(4)
【分析】(1)用B组频数除以所占百分比即可求解;
(2)用50减去A、B、C组频数,求出D组频数,即可补全折线统计图;
(3)用360°乘以D组所占百分比即可求解;
(4)列表得出所有等可能结果,根据概率公式即可求解.
【详解】(1)20÷40%=50(人),
故答案为:50;
(2)50-10-20-5=15(人),
补全折线统计图如图:
;
(3),
故答案为:;
(4)列表如下:
小明
小丽
A
B
C
D
A
B
C
D
由列表可知,一共有16种等可能的结果,他们选择相同主题的结果有4种,
所以P(相同主题).
【点睛】本题考查了折线统计图与扇形统计图,求概率等知识,理解两幅统计图提供的公共信息是解题第(1)(2)(3)步关键,列表得出所有等可能的结果是解题第(4)步关键.
12.(1)25米
(2)米
【分析】(1)过D作于M,由可得,求出的长,利用勾股定理即可求解;
(2)过点D作于N,则四边形是矩形,得,,由已知计算得出的长度,解直角三角形得出的长度,在中求得的长度,利用线段的和差,即可解决问题.
【详解】(1)解:过D作于M,如图:
在中,,
∵(米),
∴(米),
由勾股定理得(米)
(2)如图,过点D作于N,
∵,
∴四边形是矩形,
∴(米),(米),
由题意,(米),
∵,
∴,
∴(米),(米),
由题意,,(米),
∴,
∴(米),
∴米
【点睛】本题考查了解直角三角形的应用一仰角俯角问题、勾股定理、矩形的判定与性质等知识,熟练掌握锐角三角函数定义,正确作出辅助线构造直角三角形是解题的关键.
相关试卷
这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-03解答题②,共34页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-02填空题,共14页。试卷主要包含了填空题等内容,欢迎下载使用。
这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②,共19页。试卷主要包含了单选题等内容,欢迎下载使用。