|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年山西省中考数学试卷(含答案解析)
    立即下载
    加入资料篮
    2023年山西省中考数学试卷(含答案解析)01
    2023年山西省中考数学试卷(含答案解析)02
    2023年山西省中考数学试卷(含答案解析)03
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年山西省中考数学试卷(含答案解析)

    展开
    这是一份2023年山西省中考数学试卷(含答案解析),共23页。试卷主要包含了 计算×的结果为, 下列计算正确的是,5x等内容,欢迎下载使用。

    2023年山西省中考数学试卷
    1. 计算(−1)×(−3)的结果为(    )
    A. 3 B. 13 C. −3 D. −4
    2. 全民阅读有助于提升一个国家、一个民族的精神力量.图书馆是开展全民阅读的重要场所.以下是我省四个地市的图书馆标志,其文字上方的图案是轴对称图形的是(    )
    A. B. C. D.
    3. 下列计算正确的是(    )
    A. a2⋅a3=a6 B. (−a3b)2=−a6b2 C. a6÷a3=a2 D. (a2)3=a6
    4. 山西是全国电力外送基地,2022年山西省全年外送电量达到1464亿千瓦时,同比增长18.55%.数据1464亿千瓦时用科学记数法表示为(    )
    A. 1.464×108千瓦时
    B. 1464×108千瓦时
    C. 1.464×1011千瓦时
    D. 1.464×1012千瓦时
    5. 如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40∘,则∠DBC的度数为(    )


    A. 40∘ B. 50∘ C. 60∘ D. 70∘
    6. 一种弹簧秤最大能称不超过10kg的物体,不挂物体时弹簧的长为12cm,每挂重1kg物体,弹簧伸长0.5cm,在弹性限度内,挂重后弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为(    )
    A. y=12−0.5x
    B. y=12+0.5x
    C. y=10+0.5x
    D. y=0.5x
    7. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155∘,∠2=30∘,则∠3的度数为(    )

    A. 45∘ B. 50∘ C. 55∘ D. 60∘
    8. 若点A(−3,a),B(−1,b),C(2,c)都在反比例函数y=kx(k<0)的图象上,则a,b,c的大小关系用“<”连接的结果为(    )
    A. b 9. 中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A,曲线终点为B,过点A,B的两条切线相交于点C,列车在从A到B行驶的过程中转角α为60∘.若圆曲线的半径OA=1.5km,则这段圆曲线AB的长为(    )


    A. π4km B. π2km C. 3π4km D. 3π8km
    10. 蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为(−2 3,3),(0,−3),则点M的坐标为(    )


    A. (3 3,−2) B. (3 3,2) C. (2,−3 3) D. (−2,−3 3)
    11. 计算:( 6+ 3)( 6− 3)的结果为______ .
    12. 如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有______ 个白色圆片(用含n的代数式表示).


    13. 如图,在▱ABCD中,∠D=60∘.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于12AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD于点F,则OFOE的值为______ .


    14. 中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是______ .

    15. 如图,在四边形ABCD中,∠BCD=90∘,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为______ .


    16. (1)计算:|−8|×(−12)2−(−3+5)×2−1;
    (2)计算:x(x+2)+(x+1)2−4x.
    17. 解方程:1x−1+1=32x−2.
    18. 为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4:4:2的比例计算出每人的总评成绩.

    小悦、小涵的三项测试成绩和总评成绩如表,这20名学生的总评成绩频数分布直方图(每组含最小值,不含最大值)如图.
    选手
    测试成绩/分
    总评成绩/分
    采访
    写作
    摄影
    小悦
    83
    72
    80
    78
    小涵
    86
    84


    (1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是______ 分,众数是______ 分,平均数是______ 分;
    (2)请你计算小涵的总评成绩;
    (3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.
    19. 风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.
    (1)求1个A部件和1个B部件的质量各是多少;
    (2)该卡车要运输这种成套设备通过此大桥,一次最多可运输多少套这种设备.

    20. 2023年3月,水利部印发《母亲河复苏行动河湖名单(2022−2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选,在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC和AB的长度(结果精确到0.1m,参考数据: 3≈1.73, 2≈1.41).
    课题
    母亲河驳岸的调研与计算
    调查方式
    资料查阅、水利部门走访、实地查看了解
    调查内容
    功能
    驳岸是用来保护河岸,阻止河岸崩塌成冲刷的构筑物
    材料
    所需材料为石料、混凝土等
    驳岸时剖面图

    相关数据及说明:图中,点A,B,C,D,E在同一竖直平面内,AE和CD均与地面平行,岸墙AB⊥AE于点A,∠BCD=135∘,∠EDC=60∘,ED=6m,AE=1.5m,CD=3.5m.
    计算结果

    交通展示



    21. 阅读与思考
    下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.
    瓦里尼翁平行四边形
    我们知道,如图1,在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,顺次连接E,F,G,H,得到的四边形EFGH是平行四边形.
    我查阅了许多资料,得知这个平行四边形EFGH被称为瓦里尼翁平行四边形.瓦里尼翁(Varingnon,Pierte1654−1722)是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.
    ①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.
    ②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.
    ③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:
    证明:如图2,连接AC,分别交EH,FG于点P,Q,过点D作DM⊥AC于点M,交HG于点N.
    ∵H,G分别为AD,CD的中点,∴HG//AC,HG=12AC.(依据1)
    ∴DNNM=DGGC.∵DG=GC,∴DN=NM=12DM.
    ∵四边形EFGH是瓦里尼翁平行四边形,∴HE//GF,即HP//GQ.
    ∵HG//AC,即HG//PQ,
    ∴四边形HPQG是平行四边形,(依据2)∴S▱HPQG=HG⋅MN=12HG⋅DM.
    ∵S△ADC=12AC⋅DM=HG⋅DM,∴S▱HPQG=12S△ADC.同理,…

    任务:(1)填空:材料中的依据1是指:______ .
    依据2是指:______ .
    (2)请用刻度尺、三角板等工具,画一个四边形ABCD及它的瓦里尼翁平行四边形EFGH、使得四边形EFGH为矩形;(要求同时画出四边形ABCD的对角线)
    (3)在图1中,分别连接AC,BD得到图3,请猜想瓦里尼翁平行四边形EFGH的周长与对角线AC,BD长度的关系,并证明你的结论.
    22. 综合与实践
    问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC和△DFE,其中∠ACB=∠DEF=90∘,∠A=∠D,将△ABC和△DFE按图2所示方式摆放,其中点B与点F重合(标记为点B).当∠ABE=∠A时,延长DE交AC于点G,试判断四边形BCGE的形状,并说明理由.

    数学思考:(1)请你解答老师提出的问题;
    深入探究:(2)老师将图2中的△DBE绕点B逆时针方向旋转,使点E落在△ABC内部,并让同学们提出新的问题.
    ①“善思小组”提出问题:如图3,当∠ABE=∠BAC时,过点A作AM⊥BE交BE的延长线于点M,BM与AC交于点N.试猜想线段AM和BE的数量关系,并加以证明.请你解答此问题;
    ②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.
    23. 综合与探究
    如图,二次函数y=−x2+4x的图象与x轴的正半轴交于点A,经过点A的直线与该函数图象交于点B(1,3),与y轴交于点C.
    (1)求直线AB的函数表达式及点C的坐标;
    (2)点P是第一象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为m.
    ①当PD=12OC时,求m的值;
    ②当点P在直线AB上方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF.设四边形FQED的面积为S,求S关于m的函数表达式,并求出S的最大值.


    答案和解析

    1.【答案】A 
    【解析】解:(−1)×(−3)
    =1×3
    =3,
    故选:A.
    根据有理数乘法的计算得出结论即可.
    本题主要考查有理数乘法的计算,熟练掌握有理数乘法的计算方法是解题的关键.

    2.【答案】C 
    【解析】解:A、B,D选项中的图书馆标志都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
    C选项中的图书馆标志能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
    故选:C.
    根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

    3.【答案】D 
    【解析】解:A.a2⋅a3=a5,故选项不符合题意;
    B.(−a3b)2=a6b2,故选项不符合题意;
    C.a6÷a3=a3,故选项不符合题意;
    D.(a2)3=a6,故选项符合题意.
    故选:D.
    选项A根据同底数幂的乘法法则判断即可;选项B根据积的乘方运算法则判断即可;选项C根据同底数幂的除法法则判断即可;选项D根据幂的乘方运算法则判断即可.
    本题考查了同底数幂的乘除法,幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.

    4.【答案】C 
    【解析】解:1464亿千瓦时=146400000000千瓦时=1.464×1011千瓦时,
    故选:C.
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    5.【答案】B 
    【解析】解:∵BD经过圆心O,
    ∴∠BCD=90∘,
    ∵∠BDC=∠BAC=40∘,
    ∴∠DBC=90∘−∠BDC=50∘,
    故选:B.
    由圆周角定理可得∠BCD=90∘,∠BDC=∠BAC=40∘,再利用直角三角形的性质可求解.
    本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.

    6.【答案】B 
    【解析】解:根据题意,得y=12+0.5x(0≤x≤10),
    故选:B.
    根据不挂物体时弹簧的长为12cm,每挂重1kg物体,弹簧伸长0.5cm,可得在弹性限度内,y与x的函数关系式.
    本题考查了一次函数的应用,理解题意并根据题意建立函数关系式是解题的关键.

    7.【答案】C 
    【解析】解:∵AB//OF,
    ∴∠1+∠OFB=180∘,
    ∵∠1=155∘,
    ∴∠OFB=25∘,
    ∵∠POF=∠2=30∘,
    ∴∠3=∠POF+∠OFB=30∘+25∘=55∘.
    故选:C.
    由平行线的性质求出∠OFB=25∘,由对顶角的性质得到∠POF=∠2=30∘,由三角形外角的性质即可求出∠3的度数.
    本题考查平行线的性质,三角形外角的性质,对顶角的性质,关键是由平行线的性质求出∠OFB的度数,由对顶角的性质得到∠POF的度数,由三角形外角的性质即可解决问题.

    8.【答案】D 
    【解析】解:∵k<0,点A,B同象限,y随x的增大而增大,
    ∵−3<−1,
    ∴0 又∵C(2,c)都在反比例函数y=kx(k<0)的图象上,
    ∴c<0,
    ∴c 故选:D.
    反比例函数y=kx(k≠0,k为常数)中,当k<0时,双曲线在第二,四象限,在每个象限内,y随x的增大而增大.根据这个判定则可.
    本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.

    9.【答案】B 
    【解析】解:∵过点A,B的两条切线相交于点C,
    ∴∠OAC=∠OBC=90∘,
    ∴A、O、B、C四点共圆,
    ∴∠AOB=α=60∘,
    ∴圆曲线AB的长为:60π⋅1.5180=12π(km).
    故选:B.
    由圆的切线可得∠OAC=∠OBC=90∘,进而可证明A、O、B、C四点共圆,利用圆内接四边形的性质可求得∠AOB=60∘,再根据弧长公式计算可求解.
    本题主要考查圆的切线的性质,点与圆的位置关系,圆内接四边形的性质,弧长的计算,证明A、O、B、C四点共圆求解∠AOB的度数是解题的关键.

    10.【答案】A 
    【解析】解:设中间正六边形的中心为D,连接DB.

    ∵点P,Q的坐标分别为(−2 3,3),(0,−3),图中是7个全等的正六边形,
    ∴AB=BC=2 3,OQ=3,
    ∴OA=OB= 3,
    ∴OC=3 3,
    ∵DQ=DB=2OD,
    ∴OD=1,QD=DB=CM=2,
    ∴M(3 3,−2),
    故选:A.
    设中间正六边形的中心为D,连接DB.判断出OC,CM的长,可得结论.
    本题考查正多边形与圆,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    11.【答案】3 
    【解析】解:原式=( 6)2−( 3)2
    =6−3
    =3.
    故答案为:3.
    直接利用平方差公式计算得出答案.
    此题主要考查了二次根式的混合运算,正确运用平方差公式是解题关键.

    12.【答案】(2+2n) 
    【解析】解:第1个图形中有2+2×1=4个白色圆片;
    第2个图形中有2+2×2=6个白色圆片;
    第3个图形中有2+2×3=8个白色圆片;
    ⋅⋅⋅⋅⋅
    第n个图形中有(2+2n)个白色圆片;
    故答案为:(2+2n).
    每增加一个图案增加2个白色圆片,据此解答.
    本题考查了图形的变化类问题,找到图形变化的规律是解答本题的关键.

    13.【答案】 3 
    【解析】解:∵四边形ABCD是平行四边形,
    ∴AD//BC,∠D=∠ABC=60∘,
    ∴∠BAD=180∘−60∘=120∘,
    ∵BA=BE,
    ∴△ABE是等边三角形,
    ∴∠BAE=60∘,
    ∵BF平分∠ABE,
    ∴AO=OE,BO⊥AE,
    ∵∠OAF=∠BAD−∠BAE=120∘−60∘=60∘,
    ∴tan∠OAF=OFOA= 3,
    ∴OFOE= 3,
    故答案为: 3.
    证明△ABE是等边三角形,推出BO⊥AE,AE=OE,可得结论.
    本题考查作图-基本作图,平行四边形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    14.【答案】16 
    【解析】解:把《论语》《孟子》《大学》《中庸》分别记为A、B、C、D,
    画树状图如下:

    共有12种等可能的情况,其中抽取的两本恰好是《论语》和《大学》的结果有2种,即AC、CA,
    ∴抽取的两本恰好是《论语》和《大学》的概率是212=16,
    故答案为:16.
    画树状图,共有12种等可能的情况,其中抽取的两本恰好是《论语》和《大学》的结果有2种,再由概率公式求解即可.
    此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    15.【答案】 973 
    【解析】解:过A作AH⊥BC于H,延长AD,BC于E,如图所示:
    则∠AHC=∠AHB=90∘,
    ∵AB=AC=5,BC=6,
    ∴BH=HC=12BC=3,
    ∴AH= AC2−CH2=4,
    ∵∠ADB=∠CBD+∠CEH,∠ADB=2∠CBD,
    ∴∠CBD=∠CED,
    ∴DB=DE,
    ∵∠BCD=90∘,
    ∴DC⊥BE,
    ∴CE=BC=6,
    ∴EH=CE+CH=9,
    ∵DC⊥BE,AH⊥BC,
    ∴CD//AH,
    ∴△ECD∽△EHA,
    ∴CDAH=CEHE,
    即CD4=69,
    ∴CD=83,
    ∴DE= CE2+CD2= 62+(83)2=2 973,
    ∵CD//AH,
    ∴DEAD=CECH,
    即2 973AD=63,
    解得AD= 973.
    故答案为: 973.
    过A作AH⊥BC于H,延长AD,BC于E,根据等腰三角形的性质得出BH=HC=12BC=3,根据勾股定理求出AH= AC2−CH2=4,证明∠CBD=∠CED,得到DB=DE,根据等腰三角形的性质得出CE=BC=6,证明CD//AH,得到CDAH=CEHE,求出CD=83,根据勾股定理求出DE= CE2+CD2= 62+(83)2=2 973,根据CD//AH,得到DEAD=CECH,即2 973AD=63,求出结果即可.
    本题考查了等腰三角形的判定和性质,三角形外角的性质,勾股定理,平行线分线段成比例定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.

    16.【答案】解:(1)|−8|×(−12)2−(−3+5)×2−1
    =8×14−2×12
    =2−1
    =1;
    (2)x(x+2)+(x+1)2−4x
    =x2+2x+x2+2x+1−4x
    =2x2+1. 
    【解析】(1)根据绝对值,指数幂及单项式乘多项式的计算得出结论即可;
    (2)根据指数幂及单项式乘多项式的计算得出结论即可.
    本题主要考查绝对值,指数幂及单项式乘多项式的计算,熟练掌握绝对值,指数幂及单项式乘多项式的计算方法是解题的关键.

    17.【答案】解:由题意得最简公分母为2(x−1),
    ∴原方程可化为:
    2+2x−2=3.
    ∴x=32.
    检验:把x=32代入2(x−1)=1≠0,且原方程左边=右边.
    ∴原方程的解为x=32. 
    【解析】由题意,根据分式方程的解题步骤先找出最简公分母,化为整式方程,解方程后检验即可得结果.
    本题主要考查了分式方程的解法,解题时要能找准最简公分母进行变形化为整式方程是关键,同时注意检验.

    18.【答案】69 69 70 
    【解析】解:(1)七位评委给小涵打出的分数从小到大排列为:67,68,69,69,71,72,74,
    所以这组数据的中位数是69(分),众数是69(分),平均数是67+68+69+69+71+72+747=70(分);
    故答案为:69,69,70;
    (2)86×4+84×4+70×24+4+2=82(分),
    答:小涵的总评成绩为82分;
    (3)不能判断小悦能否入选,但是小涵能入选,
    理由:由20名学生的总评成绩频数分布直方图可知,小于80分的有10人,因为小悦78分、小涵82分,
    所以不能判断小悦能否入选,但是小涵能入选.
    (1)分别根据中位数、众数和平均数的定义即可求出答案;
    (2)根据加权平均数公式计算即可;
    (3)根据20名学生的总评成绩频数分布直方图即可得出答案.
    本题考查了频数(率)分布直方图,加权平均数,中位数和众数,解题的关键在于熟练掌握加权平均数,中位数和众数的计算方法.

    19.【答案】解:(1)设1个A部件的质量为x吨,1个B部件的质量为y吨,
    由题意得:x+2y=2.82x=3y,
    解得:x=1.2y=0.8,
    答:1个A部件的质量为1.2吨,1个B部件的质量为0.8吨.
    (2)解:设该卡车一次可运输m套这种设备通过此大桥.
    根据题意得:(1.2+0.8×3)⋅m+8≤30,
    解得:m≤559.
    ∵m为整数,
    ∴m取最大值,
    ∴m=6.
    答:该卡车一次最多可运输6套这种设备通过此大桥. 
    【解析】设1个A部件的质量为x吨,1个B部件的质量为y吨,根据1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.列出二元一次方程组,解方程组即可.
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.

    20.【答案】解:过E作EF⊥CD于F,延长AB,CD交于H,
    ∴∠EFD=90∘,
    由题意得,在Rt△EFD中,∠EDF=60∘,ED=6,sin∠EDF=EFED,cos∠EDF=FDED,
    ∴EF=ED⋅sin∠EDF=6×sin60∘=6× 32=3 3(m),
    ∴FD=ED⋅cos∠EDF=6×cos60∘=6×12=3(m),
    由题意得,∠H=90∘,四边形AEFH是矩形,
    ∴AH=EF=3 3,HF=AE=1.5m,
    ∵CF=CD−FD=3.5−3=0.5(m),
    ∴CH=HF−CF=1.5−0.5=1(m),
    在Rt△BCH中,∠H=90∘,∠BCH=180∘−∠BCD=180∘−135∘=45∘,
    ∵cos∠BCH=CHBC,tan∠BCH=BHCH,
    ∴BC=CHcos∠BCH=1cos45∘=1 22= 2≈1.4(m),
    ∴BH=CH⋅tan∠BCH=1×tan45∘=1(m),
    ∴AB=AH−BH=3 3−1≈4.2(m).
    答:BC的长度约为1.4m,AB的长度约为4.2m. 
    【解析】过E作EF⊥CD于F,延长AB,CD交于H,得到∠EFD=90∘,解直角三角形即可得到结论.
    本题考查解直角三角形的应用,矩形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.

    21.【答案】三角形中位线定理  两组对边分别平行的四边形是平行四边形 
    【解析】解:(1)证明:如图2,连接AC,分别交EH,FG于点P,Q,过点D作DM⊥AC于点M,交HG于点N.
    ∵H,G分别为AD,CD的中点,
    ∴HG//AC,HG=12AC,(三角形中位线定理),
    ∴DNMN=DGGC,
    ∵DG=GC,
    ∴DN=NM=12DM,
    ∵四边形EFGH是瓦里尼翁平行四边形,
    ∴HE//GF,即HP//GQ.
    ∵HG//AC,即HG//PQ,
    ∴四边形HPQG是平行四边形,(两组对边分别平行的四边形是平行四边形),
    ∴S▱HPQG=HG⋅MN=12HG⋅DM,
    ∵S△ADC=12AC⋅DM=HG⋅DM,
    ∴S▱HPQG=12S△ADC,
    同理可得,S▱EFQP=12S△ABC,
    ∴S▱HEFG=12S四边形ABCD,
    故答案为:三角形中位线定理,两组对边分别平行的四边形是平行四边形;
    (2)如图,画四边形ABCD,且AC⊥BD于O,点E,H,G,F分别是边AB,BC,CD,DA的中点,顺次连接EF,FG,GH,HE,则四边形EFGH为所求;

    理由如下:∵点E,H,G,F分别是边AB,BC,CD,DA的中点,
    ∴EF//BD,HG//BD,EH//AC,FG//AC,
    ∴EF//HG,EH//FG,
    ∴四边形EFGH是平行四边形,
    ∵AC⊥BD,EF//BD,
    ∴AC⊥EF,
    ∵FG//AC,
    ∴EF⊥FG,
    ∴平行四边形EFGH是矩形;
    (3)瓦里尼翁平行四边形EFGH的周长等于AC+BD,理由如下:
    ∵四边形EFGH是瓦里尼翁平行四边形,
    ∴点E,H,G,F分别是边AB,BC,CD,DA的中点,
    ∴EF=12BD,GH=12BD,EH=12AC,FG=12AC,
    ∴瓦里尼翁平行四边形EFGH的周长=EF+GF+GH+EH=12BD+12BD+12AC+12AC=AC+BD.
    (1)由三角形中位线定理和平行四边形的判定可求解;
    (2)画四边形ABCD,且AC⊥BD于O,点E,H,G,F分别是边AB,BC,CD,DA的中点,顺次连接EF,FG,GH,HE,则四边形EFGH为所求;
    (3)由三角形中位线定理可得EF=12BD,GH=12BD,EH=12AC,FG=12AC,即可求解.
    本题是四边形综合题,考查了平行四边形的判定和性质,三角形中位线定理,矩形的判定等知识,灵活运用这些性质解决问题是解题的关键.

    22.【答案】解:(1)结论:四边形BCGE为正方形.理由如下:
    ∵∠BED=90∘,
    ∴∠BEG=180∘−BED=90∘,
    ∵∠ABE=∠A,
    ∴AC//BE,
    ∴∠CGE=∠BED=90∘,
    ∵∠C=90∘,
    ∴四边形BCGE为矩形.
    ∵△ACB≌△DEB,
    ∴BC=BE.
    ∴矩形BCGE为正方形;

    (2)①结论:AM=BE.
    理由:∵∠ABE=∠BAC,
    ∴AN=BN,
    ∵∠C=90∘,
    ∴BC⊥AN,
    ∵AM⊥BE,即AM⊥BN,
    ∴S△ABF=12AN⋅BC=12BN⋅AM,
    ∵AN=BN,
    ∴BC=AM.由(1)得BE=BC,
    ∴AM=BE.
    ②解:如图:设AB,DE的交点为M,过M作MG⊥BD于G,
    ∵△ACB≌△DEB,
    ∴BE=BC=9,DE=AC=12,∠A=∠D,∠ABC=∠DBE,
    ∴∠CBE=∠DBM,
    ∵∠CBE=∠BAC,
    ∴∠D=∠BAC,
    ∴MD=MB,
    ∵MG⊥BD,
    ∴点G是BD的中点,
    由勾股定理得AB= AC2+BC2=15,
    ∴DG=12BD=152,
    ∵cos∠D=DGDM=DEBD,
    ∴DM=DG⋅BDDE=152×1512=758,即BM=DM=758,
    ∴AM=AB−BM=15−758=458,
    ∵AH⊥DE,BE⊥DE,∠AMH=∠BME,
    ∴△AMH∽△BME,
    ∴AHBE=AMBM=35,
    ∴AH=35BE=35×9=275,即AH的长为275. 
    【解析】(1)先证明四边形BCGE是矩形,再由△ACB=△DEB可得BC=BE,从而得四边形BCGE是正方形;
    (2)①由已知∠ABE=∠BAC可得AN=BN,再由等积方法S△ABF=12AN.BC=12BN−AM,再结合已知即可证明结论;
    ②设AB,DE的交点为M,过M作MG⊥BD于G,则易得MD=MB,点G是BD的中点;利用三角函数知识可求得DM的长,进而求得AM的长,利用相似三角形的性质即可求得结果.
    本题属于四边形综合题,考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.

    23.【答案】解:(1)由y=−x2+4x得,当y=0时,−x2+4x=0,
    解得x1=0,x2=4,
    ∵点A在x轴正半轴上.
    ∴点A的坐标为(4,0).
    设直线AB的函数表达式为y=kx+b(k≠0).
    将A,B两点的坐标(4,0),(1,3)分别代入y=kx+b,
    得4k+b=0k+b=3,
    解得k=−1b=4,
    ∴直线AB的函数表达式为y=−x+4.
    将x=0代入y=−x+4,得y=4.
    ∴点C的坐标为(0,4);

    (2)①解:∵点P在第一象限内二次函数y=−x2+4x的图象上,且PE⊥x轴于点E,与直线AB交于点D,其横坐标为m.
    ∴点P,D的坐标分别为P(m,−m2+4m),D(m,−m+4),
    ∴PE=−m2+4m.DE=−m+4,OE=m,
    ∵点C的坐标为(0,4),
    ∴OC=4.PD=12OC,
    ∴PD=2.
    如图1,当点P在直线AB上方时,PD=PE−DE=−m2+4m−(−m+4)=−m2+5m−4,

    ∵PD=2,
    ∴−m2+5m−4=2,
    解得m1=2.m2=3.
    如图2,当点P在直线AB下方时,PD=DE−PE=−m+4−(−m2+4m)=m2−5m+4,

    ∵PD=2,
    ∴m2−5m+4=2,
    解得m=5± 172,
    ∵0 综上所述,m的值为2或3或5− 172;

    ②解:如图3,

    由(1)得,OE=m,PE=−m2+4m,DE=−m+4.
    ∵BQ⊥x轴于点Q,交OP于点F,点B的坐标为(1,3),
    ∴OQ=1,
    ∵点P在直线AB上方,
    ∴EQ=m−1.
    ∵PE⊥x轴于点E,
    ∴∠OQF=∠OEP=90∘,
    ∴FQ//DE,∠FOQ=∠POE,
    ∴△FOQ∽△POE,
    ∴FQPE=OQOE,
    ∴FQ−m2+4m=1m,
    ∴FQ=−m2+4mm=−m+4,
    ∴FQ=DE,
    ∴四边形FQED为平行四边形,
    ∵PE⊥x轴,
    ∴四边形FQED为矩形.
    ∴S=EQ+FQ=(m−1)(−m+4),即S=−m2+5m−4=−(m−52)2+94,
    ∵−1<0,1 ∴当m=52时,S的最大值为94; 
    【解析】(1)利用待定系数法可求得直线AB的函数表达式,再求得点C的坐标即可;
    (2)①分当点P在直线AB上方和点P在直线AB下方时,两种情况讨论,根据PD=2列一元二次方程求解即可;
    ②证明△FOQ∽△POE,推出FQ=−m+4,再证明四边形FQED为矩形,利用矩形面积公式得到二次函数的表达式,再利用二次函数的性质即可求解.
    本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,特殊四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建二次函数解决问题,属于中考压轴题.

    相关试卷

    2022年山西省中考数学试卷+精细解析: 这是一份2022年山西省中考数学试卷+精细解析,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山西省中考数学试卷(含答案解析): 这是一份2023年山西省中考数学试卷(含答案解析),共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山西省中考数学试卷(含解析): 这是一份2023年山西省中考数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年山西省中考数学试卷(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map