高考化学三轮冲刺专题06 化工、环境与原理大综合专题(含解析)
展开 专题05 化工、环境与原理大综合专题
1.(14分) 氮的氧化物是造成大气污染的主要物质,研究氮氧化物间的相互转化及脱除具有重要意义。
I.氮氧化物间的相互转化
(1)已知2NO(g)+O2(g) 2NO2(g)的反应历程分两步:
第一步 2NO(g) N2O2(g) (快速平衡)
第二步 N2O2(g) +O2(g) 2NO2(g) (慢反应)
①用O2表示的速率方程为v(O2)= k1·c2(NO)·c(O2);NO2表示的速率方程为v(NO2)=k2·c2(NO)·c(O2),k1与k2分别表示速率常数(与温度有关),则=________。
②下列关于反应2NO(g)+O2(g)=2NO2(g)的说法正确的是_________(填序号)。
A.增大压强,反应速率常数一定增大
B.第一步反应的活化能小于第二步反应的活化能
C.反应的总活化能等于第一步和第二步反应的活化能之和
(2)容积均为1L的甲、乙两个容器,其中甲为绝热容器,乙为恒温容器.相同温度下,分别充入0.2mol的NO2,发生反应:2NO2(g) N2O4(g) ∆H<0,甲中NO2的相关量随时间变化如图所示。
①0~3s内,甲容器中NO2的反应速率增大的原因是______________________。
②甲达平衡时,温度若为T℃,此温度下的平衡常数K=____________________。
③平衡时,K甲_____K乙,P甲_____P乙(填“>”、“<” 或“=”)。
(3)以NH3为还原剂在脱硝装置中消除烟气中的氮氧化物。
主反应:4NH3(g)+4NO(g)+O2(g)= 4N2(g)+6H2O(g) ΔH1
副反应:4NH3(g)+3O2(g)=2N2(g)+6H2O(g) ΔH2=-1267.1kJ/mol
4NH3(g)+5O2(g)=4NO(g)+6H2O(g) ΔH3=-907.3 kJ/mol
①△H1=____________。
②将烟气按一定的流速通过脱硝装置,测得出口NO的浓度与温度的关系如图1,试分析脱硝的适宜温度是______(填序号)。
a.<850℃ b.900~1000℃ c.>1050 ℃
(4)以连二亚硫酸盐(S2O42-)为还原剂脱除烟气中的NO,并通过电解再生,装置如图2。阴极的电极反应式为____________,电解槽中的隔膜为_________(填“阳”或“阴”)离子交换膜。
【答案】(1)①0.5 (2分) ②B (1分)
(2)①反应放热,体系的温度升高,反应速率加快(1分)
②225(2分) ③<(1分) > (1分)
(3)①-1626.9 kJ/mol(2分) ②b (1分)
(4)①2SO32-+4H++2e-=S2O42-+2H2O(2分) ②阳(1分)
【解析】(1)①用O2表示的速率方程为v(O2)=k1·c2(NO)·c(O2)、NO2表示的速率方程为v(NO2)=k2·c2(NO)·c(O2),2v(O2)=v(NO2),所以=;②A项,反应速率常数只与温度有关,与压强大小无关,A错误;B项,反应越容易,反应物活化能越小,反应速率越快,第一步反应较快,说明反应物活化能较小,B正确;C项,反应的总活化能小于第一步和第二步反应的活化能之和,C错误;故合理选项是B;(2)①该反应的正反应是放热反应,加入反应物,随着反应的进行,反应体系温度升高,化学反应速率加快;②反应开始时c(NO2)=0.2mol/L,c(N2O4)=0mol/L,到平衡时c(NO2)平=0.02mol/L,则根据方程式2NO2(g) N2O4(g)中物质变化关系可知c(N2O4)平=0.09mol/L则该温度下该反应的化学平衡常数K==225;③甲容器保持恒容,乙容器保持恒温,由于该反应的正反应是放热反应,随着反应的进行,容器内气体的温度升高,升高温度,平衡向吸热的逆反应方向移动,所以平衡时,K甲
(3)①i. 4NH3(g)+4NO(g)+O2(g)= 4N2(g)+6H2O(g) ΔH1
ii. 4NH3(g)+3O2(g)=2N2(g)+6H2O(g) ΔH2=-1267.1kJ/mol
iii. 4NH3(g)+5O2(g)=4NO(g)+6H2O(g) ΔH3=-907.3 kJ/mol
将方程式2×ii-iii,整理可得4NH3(g)+4NO(g)+O2(g)=4N2(g)+6H2O(g) △H1=2△H2-△H3=-1626.9 kJ/mol;②氮氧化物残留浓度越低越好;温度超过1000℃,氨气和氧气反应生成NO;②氮氧化物残留浓度越低越好,根据图知,在900~1000℃时氮氧化物浓度最低;温度超过1000℃,氨气和氧气反应生成NO,导致NO浓度增大,故合理选项是b;(4)阴极上亚硫酸根离子得电子生成S2O42-,电极反应式为2SO32-+4H++2e-=S2O42-+2H2O,阳极上,水失电子生成氧气和氢离子,右侧多余的氢离子通过离子交换膜进入左侧,所以交换膜为阳离子交换膜。
2.(15分)工业上,常采用氧化还原方法处理尾气中的CO、NO。
方法1:氧化法。沥青混凝土可作为反应:2CO(g)+O2(g) 2CO2(g)的催化剂。图甲表示在相同的恒容密闭容器、相同起始浓度、相同反应时间段下,使用同质量的不同沥青混凝土(α型、β型)催化时,CO的转化率与温度的关系。
(1)在a、b、c、d四点中,未达到平衡状态的是____。
(2)已知c点时容器中O2浓度为0.04mol·L-1,则50℃时,在α型沥青混凝土中CO转化反应的平衡常数K=________________(用含x的代数式表示)。
(3)下列关于图甲的说法正确的是________________。
A.CO转化反应的平衡常数K(a)<K(c)
B.在均未达到平衡状态时,同温下β型沥青混凝土中CO转化速率比α型要大
C.b点时CO与O2分子之间发生有效碰撞的几率在整个实验过程中最高
D.e点转化率出现突变的原因可能是温度升高后催化剂失去活性
方法2:还原法。某含钴催化剂可以催化消除柴油车尾气中的碳烟(C)和NOx。不同温度下,将模拟尾气(成分如表所示)以相同的流速通过该催化剂,测得所有产物(CO2、N2、N2O)与NO的相关数据结果如图乙所示。
模拟尾气
气体(10 mol)
碳烟
NO
O2
He
物质的量(mol)
0.025
0.5
9.475
n
(4)375℃时,测得排出的气体中含0.45molO2和0.052molCO2,则Y的化学式为____。
(5)实验过程中采用NO模拟NOx,而不采用NO2的原因是________________。
(6)工业上常用高浓度的 K2CO3溶液吸收CO2,得溶液X,再利用电解法使K2CO3溶液再生,其装置示意图如图:
①在阳极区发生的反应包括____和H++HCO3- ==CO2↑+H2O
②简述CO32-在阴极区再生的原理:____。
【答案】(1)a (2分) (2) (2分) (3)BD(3分)
(4) N2(2分) (5)由于存在反应2NO2N2O4会导致一定的分析误差(2分)
(6)①4OH--4e-═2H2O+O2↑(或2H2O-4e-=4H++O2↑)(2分)
②阴极水电解生成氢气和氢氧根离子,OH-与HCO3-反应生成CO32- (2分)
【解析】(1)CO和O2反应是放热反应,当达到平衡后升高温度,CO的转化率降低,所以,b、c、d点表示平衡状态,a点对应的状态是不平衡状态。(2)令CO起始浓度为a mol·L-1。
2CO(g)+O2(g) 2CO2(g)
起始浓度(mol·L-1): a 0
转化浓度(mol·L-1): ax ax
平衡浓度(mol·L-1): a(1-x) 0.04 ax
。(3)CO和O2反应是放热反应,a点未达到平衡,没有平衡常数。若达到平衡后,温度升高,平衡向左移动,平衡常数K减小,A项错误;观察图象知,β催化剂作用下CO的转化速率大于α催化剂,B项正确;有效碰撞几率与反应速率有关,温度越高,反应速率越大,有效碰撞几率越高,故在图象中e点有效碰撞几率最高,C项错误;催化剂需要一定活性温度,转化率出现突变,可能是因温度高而催化剂失去活性,D项正确。故选BD。(4)观察图象,NO生成X、Y的转化率之和为24%,即NO参加反应的物质的量n(NO)=0.025mol×(16%+8%)=0.006 mol,根据原子守恒,X和Y的物质的量之和等于0.003mol。先根据O原子守恒求N2O的物质的量,再根据N守恒求N2的物质的量。由投入各物质和排出各物质的物质的量知,
NO+C+O2→CO2+N2+N2O
物质的量:0.006 0.05 0.052 0.001 0.002
根据图象,X的体积是Y的2倍,故Y为N2。
(5)NO2、N2O4共存,二者存在转化平衡,用NO2模拟实验会产生较大误差。
(6)①装置图分析与电源正极相连的为电解池的阳极,与电源负极相连的为电解池的阴极,阳极上是氢氧根离子失电子生成氧气,电极反应为:4OH--4e-═2H2O+O2↑(或2H2O-4e-=4H++O2↑),生成的氢离子与HCO3-反应生成二氧化碳气体;②在阴极区,溶液中H+放电,破坏水的电离平衡,OH-浓度增大,OH-与HCO3-反应生成CO32-,所以CO32-再生。
3.(15分)碳、氮是中学化学重要的非金属元素,在生产、生活中有广泛的应用。
(1)治理汽车尾气中NO和CO的一种方法是:在汽车的排气管道上安装一个催化转化装置,使NO与CO反应,产物都是空气中的主要成分。写出该反应的热化学方程式______________________________________。
已知:①N2(g)+O2(g)=2NO(g) △H=+179.5kJ/mol
②2NO(g)+O2(g)=2NO2(g) △H=-112.3kJ/mol
③NO2(g)+CO(g)=NO(g)+CO2(g) △H=-234kJ/mol
(2)己知植物光合作用发生的反应如下:
6CO2(g)+6H2O(l)C6H12O6(s)+6O2(g) △H=+669.62 kJ/mol
该反应达到化学平衡后,若改变下列条件,CO2转化率增大的是__________。
a.增大CO2的浓度 b.取走一半C6H12O6 c.加入催化剂 d.适当升高温度
(3)N2O5的分解反应2N2O5(g) 4NO2(g)+O2(g),由实验测得在67℃时N2O5的浓度随时间的变化如下:
时间/min
0
1
2
3
4
5
C(N2O5)/(mol·L-1)
1.00
0.71
0.50
0.35
0.25
0.17
计算在0~2min时段,化学反应速率v(NO2)=___mol•L-1•min-1。
(4)新的研究表明,可以将CO2转化为炭黑进行回收利用,反应原理如图所示。
①在转化过程中起催化作用的物质是_________________;
②写出总反应的化学方程式______________________________________。
(5)工业上以NH3和CO2为原料合成尿素[CO(NH2)2),反应的化学方程式如下:2NH3(g)+CO2(g) CO(NH2)2(l)+H2O(l)
根据上述反应,填写下列空白
①己知该反应可以自发进行,则△H___0。(填“>”、“<”或“=”);
②一定温度和压强下,若原料气中的NH3和CO2的物质的量之比=x,如图是x与CO2的平衡转化率(α)的关系。α随着x增大而增大的原因是___________________;B点处,NH3的平衡转化率为_______________________________。
③一定温度下,在3L定容密闭容器中充入NH3和CO2,若x=2,当反应后气体压强变为起始时气体压强的时达到平衡,测得此时生成尿素90g。该反应的平衡常数K=___。
【答案】(1)2NO(g)+2CO(g)N2(g)+2CO2(g) ΔH=-795.8kJ/mol (2分)
(2)d (2分) (3)0.5 (2分)
(4)①FeO (1分) ②CO2C+O2 (1分)
(5)①< (1分) ②x越大,NH3的物质的量越大,CO2平衡正向移动,转化率增大(2分) 32% (2分) ③0.25(mol/L)-3 (2分)
【解析】(1)产物都是空气中的主要成分,所以会生成N2和CO2,根据盖斯定律,其热化学方应方程式为:2NO(g)+2CO(g)N2(g)+2CO2(g) △H=-795.8kJ/mol ;(2)a项,增大CO2的浓度,CO2的转化率不一定增大,a错误;b项, C6H12O6是固体,对平衡无影响,b错误;c项,催化剂只改变反应速率,不改变平衡移动,对转化率无影响,c错误;d项,该反应为吸热反应,升高温度,平衡向正反应方向移动,CO2转化率增大,d正确;(3)据速率之比等于化学反应系数之比,;(4)根据图可知,FeO是催化剂,总反应方程式为:CO2C+O2 (5)①该反应为反应前后气体分子数减小的反应,根据ΔG=ΔH-TΔS,ΔS<0,能自发进行ΔG<0,所以ΔH<0;②x越大,NH3的物质的量越大,平衡正向移动,CO2转化率增大;B点处x=4,原料气中NH3和CO2的物质的量比为4,CO2转化率为64%,假设NH3为4mol,CO2为1mol,则反应的CO2的物质的量为0.64 mol,根据热反应方程式可知,反应的NH3的物质的量为1.28mol,其转化率为;③x=2,原料气中NH3和CO2的物质的量比为2,假设NH3为2xmol,CO2为xmol,设转化的CO2为nmol,其三段式为:
2NH3(g)+CO2(g) CO(NH2)2(l)+H2O(l)
始/ mol 2x x 0 0
转/ mol 2n n n n
平/ mol (2x-2n) (x-n) n n
相同条件下,压强之比等于物质的量之比,平衡时,反应后气体压强变为起始时气体压强的,其 ,,此时生成尿素90g,尿素的物质的量为,,体积为3L,其平衡常数为:。
4.(15分)CO2既是温室气体,也是重要的化工原料,二氧化碳的捕捉和利用是我国能源领域的一个重要战略方向。
(1)用活性炭还原法可以处理汽车尾气中的氮氧化物,某研究小组向某密闭容器加入一定量的活性炭和NO,发生反应C(s)+ 2NO(g) N 2(g)+CO2(g) △H,在T 1℃时,反应进行到不同时间测得各物质的浓度如下:
时间/min
浓度/(mol/L)
0
10
20
30
40
NO
2.0
1.16
0.40
0.40
0.6
N2
0
0.42
0.80
0.80
1.2
CO2
0
0.42
0.80
0.80
1.2
①根据图表数据分析T1 ℃时,该反应在0~10 min内的平均反应速率v(N2)=____________mol·L -1·min -1;计算该反应的平衡常数K=_____________。
② 若30 min后只改变某一条件,据上表中的数据判断改变的条件可能是____________(填字母编号)。
A.加入合适的催化剂 B.适当缩小容器的体积
C.通入一定量的NO D.加入一定量的活性炭
③若30 min后升高温度至T2℃,达到平衡时,容器中NO、N2、CO2的浓度之比为2:3:3,则达到新平衡时NO的转化率____________(填“升高”或“降低”),△H_____0(填“>”或“<”)。
(2)工业上用CO2和H2反应合成二甲醚。已知:
CO2(g)+3H2(g) CH3OH(g)+H2O(g) ΔH 1=-49.1 kJ·mol - 1
2CH3OH(g) CH3OCH3(g)+H2O(g) ΔH 2=-24.5 kJ·mol - 1
写出CO2(g)和H2(g)转化为CH3OCH3(g)和H2O(g)的热化学方程式_____________________________________。
(3)二甲醚燃料电池具有能量转化率高、电量大的特点而被广泛应用,一种二甲醚氧气电池(电解质为KOH溶液)的负极反应式为:_______________________。
(4)常温下,用NaOH溶液作CO2捕捉剂不仅可以降低碳排放,而且可得到重要的化工产品Na2CO3。
①若某次捕捉后得到pH=10的溶液,则溶液中c(CO32-)∶c(HCO3-)=_______________。[常温下K 1(H2CO3)=4.4×10 -7、 K 2(H2CO3)=5×10 -11]。
②欲用2LNa2CO3溶液将4.66 g BaSO4 (233 g/moL)固体全都转化为BaCO3,则所用的Na2CO3溶液的物质的量浓度至少为__________________________。[已知:常温下Ksp(BaSO4)=1×10-11,Ksp (BaCO3)=1×10 -10]。(忽略溶液体积的变化)
【答案】(1)①0.042(1分) 4.0(2分) ②BC(2分) ③降低(1分) < (1分)
(2)2CO2(g)+6H2(g) CH3OCH3(g)+3H2O(g) △H=-122.7 kJ·mol-1 (2分)
(3)CH3OCH3 -12e- + 16OH- = 2CO32- + 11H2O (2分)
(4)①1:2或0.5(2分) ②0.11mol/L(2分)
【解析】(1)①在0~10min内的平均反应速率υ(N2)=(0.42mol/L-0mol/L)10min=0.042mol/(L·min)。20min~30min各物质的物质的量浓度不变,说明反应已经达到平衡,即平衡时NO、N2、CO2物质的量浓度依次为0.40mol/L、0.80mol/L、0.80mol/L,该反应的平衡常数K=[c(N2)·c(CO2)]/c2(NO)==4。②30min后改变一个条件,40min时NO、N2、CO2的浓度都变为30min时的1.5倍。A项,加入合适的催化剂,平衡不移动,各物质物质的量浓度不变,不可能;B项,适当缩小容器的体积,平衡不移动,但各物质物质的量浓度成比例增大,可能;C项,通入一定量的NO,由于C是固体,相当于增大压强,平衡不移动,但各物质物质的量浓度成比例增大,可能;D项,加入一定量的活性炭,由于C是固体,平衡不移动,各物质物质的量浓度不变,不可能;故选BC。③30min时NO、N2、CO2的浓度之比为0.40:0.80:0.80=1:2:2,升高温度NO、N2、CO2的浓度之比为2:3:3,即升高温度平衡向逆反应方向移动,则达到新平衡时NO的转化率降低,逆反应为吸热反应,ΔH0。(2)将反应编号,
CO2(g)+3H2(g)CH3OH(g)+H2O(g) ΔH1=-49.1 kJ·mol-1(①式)
2CH3OH(g)CH3OCH3(g)+H2O(g) ΔH2=-24.5 kJ·mol-1(②式)
应用盖斯定律,①式2+②式得2CO2(g)+6H2(g)CH3OCH3(g)+3H2O(g)ΔH=2ΔH1+ΔH2=2(-49.1kJ/mol)+(-24.5kJ/mol)=-122.7kJ/mol,反应的热化学方程式为2CO2(g)+6H2(g)CH3OCH3(g)+3H2O(g)ΔH=-122.7kJ/mol。(3)二甲醚氧气电池中电解质为KOH溶液,负极二甲醚被氧化成CO32-,1mol二甲醚失去12mol电子,负极反应式为CH3OCH3-12e-+16OH-=2CO32-+11H2O。(4)①H2CO3的电离方程式为H2CO3H++HCO3-、HCO3-H++CO32-,K2(H2CO3)=[c(H+)·c(CO32-)]/c(HCO3-),则c(CO32-):c(HCO3-)= K2(H2CO3)/c(H+)=510-11(110-10)=1:2。②n(BaSO4)==0.02mol,沉淀转化的离子方程式为BaSO4(s)+CO32-(aq)BaCO3(s)+SO42-(aq),该反应的平衡常数K=c(SO42-)/c(CO32-)=Ksp(BaSO4)/Ksp(BaCO3)=110-11(110-10)=0.1;根据离子方程式,当BaSO4固体全部转化时消耗CO32-物质的量为0.02mol,生成的SO42-物质的量为0.02mol,溶液中c(SO42-)=0.02mol2L=0.01mol/L,溶液中c(CO32-)= c(SO42-)/K=0.01mol/L0.1=0.1mol/L;所用Na2CO3物质的量浓度至少为0.02mol2L+0.1mol/L=0.11mol/L。
5.(15分)CO2是目前大气中含量最高的一种温室气体,中国政府承诺,到2020年,单位GDP二氧化碳排放比2005年下降40%~50%。CO2的综合利用是解决温室问题的有效途径。
(1)研究表明CO2和H2在催化剂存在下可发生反应生成CH3OH。己知部分反应的热化学方程式如下:
CH3OH(g)+ 3/2O2(g) =CO2(g)+2H2O(1) ΔH1=akJ•mol-1
H2(g)+1/2O2(g) =H2O(1) ΔH2=bkJ•mol-1
H2O(g) = H2O(l) ΔH3=ckJ•mol-1
则 CO2(g)+3H2(g) CH3OH(g)+H2O(g) ΔH=__________kJ•mol-1
(2)为研究CO2与CO之间的转化,让一定量的CO2与足量碳在体积可变的密闭容器中反应:C(s)+CO2(g) 2CO(g) H,反应达平衡后,测得压强、温度对CO的体积分数(φ(CO)%)的影响如图所示。
回答下列问题:
①压强 p1、p2、p3的大小关系是________;Ka 、 Kb 、 Kc 为a、b、c三点对应的平衡常数,则其大小关系是_________。
②900℃、1.0 MPa时,足量碳与a molCO2反应达平衡后,CO2的转化率为___________ (保留三位有效数字),该反应的平衡常数Kp=_________(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
(3)① 以二氧化钛表面覆盖Cu2Al2O4 为催化剂,可以将CO2 和CH4 直接转化成乙酸,CO2(g)+CH4(g) CH3COOH(g)。在不同温度下催化剂的催化效率与乙酸的生成速率如右图所示。250~300 ℃时,乙酸的生成速率降低的主要原因是_____________; 300~400℃时,乙酸的生成速率升高的主要原因是________________________________。
② 为了提高该反应中CO2的转化率,可以采取的措施是_____(写一条即可)。
(4)以铅蓄电池为电源可将CO2转化为乙烯,其原理如图所示,电解所用电极材料均为惰性电极。阴极上的电极反应式为_________________________;每生成0.5mol乙烯,理论上需消耗铅蓄电池中_____mol硫酸。
【答案】(1)(3b-a-c ) (2分)
(2)①p1<p2<p3(2分) Ka=Kb<Kc(1分)
②66.7% (或0.667) (2分) 3.2 MPa(2分)
(3)①催化剂的催化效率降低(1分) 温度升高,化学反应速率加快(1分)
②增大反应体系压强或增大CH4的浓度或将乙酸液化分离出来(1分)
(4)2CO2+12H++12e-=C2H4+4H2O(2分) 6 (1分)
【解析】(1)已知①CH3OH(g)+ 3/2O2(g) =CO2(g)+2H2O(1) ΔH1=akJ•mol-1
②H2(g)+1/2O2(g) =H2O(1) △H2=bkJ•mol-1
③H2O(g) = H2O(l) △H3=ckJ•mol-1
则根据盖斯定律,由3②-①-③可得到 CO2(g)+3H2(g) CH3OH(g)+H2O(g),故△H= (3b-a-c ) kJ•mol-1。(2)①对于反应C(s)+CO2(g) 2CO(g)减小压强反应向正方向进行,由图可知相同温度时P1时的CO体积分数大于P2大于P3 故p1<p2<p3,相同压强时比较温度对反应的影响,同一压强下增大温度,CO的体积分数会增大,故正反应为吸热反应,ΔH>0,平衡常数只受反应温度影响,故在700℃下,Ka=Kb,c点的温度高于a点和b点,温度升高反应正向进行故Ka=Kb<Kc。②若起始压强为P0,达到平衡转化率为α,
C(s)+CO2(g) 2CO(g)
起始(mol) a 0
变化(mol) m 2m
平衡(mol) a-m 2m
故,,故CO2的转化率为≈66.7% (或0.667)。压强之比等于物质的量之比,则反应的平衡常数Kp=;(3)①如图为不同温度下催化剂的催化效率与乙酸的生成速率的关系,温度超过250℃时,催化剂的催化效率降低,在300℃时失去活性,所以温度高于300℃时,乙酸的生成速率升高是由温度升高导致的。②为了提高该反应中CO2的转化率即使反应正向进行,可以增大压强或增大CH4的浓度或将乙酸液化分离出来;(4)电解时,阴极得电子,发生还原反应,电极反应式是2CO2+12H++12e-=C2H4+4H2O。每生成0.5mol乙烯,消耗12molH+,故消耗6mol硫酸。
6.(14分) )研究减少CO2排放是一项重要课题。CO2经催化加氢可以生成低碳有机物,主要有以下反应:
反应Ⅰ:CO2(g)+3H2(g) CH3OH(g)+H2O(g) △H1=-49.6 kJ/mol
反应Ⅱ:CH3OCH3(g)+H2O(g) 2CH3OH(g) △H2=+23.4 kJ/mol
反应Ⅲ:2CO2(g)+6H2(g) CH3OCH3(g)+3H2O(g) △H3
(1)△H3=____kJ/mol。
(2)恒温恒容条件下,在密闭容器中通入等物质的量的CO2和H2,发生反应I。下列描述能说明反应I达到平衡状态的是__________(填序号)。
A.反应体系总压强保持不变
B.容器内的混合气体的密度保持不变
C.水分子中断裂2NA个H-O键,同时氢分子中断裂3NA个H-H键
D.CH3OH和H2O的浓度之比保持不变
(3)反应II在某温度下的平衡常数为0.25,此温度下,在密闭容器中加入等物质的量的CH3OCH3(g)和H2O(g),反应到某时刻测得各组分浓度如下:
物质
CH3OCH3(g)
H2O(g)
CH3OH(g)
浓度/mol·L-1
1.8
1.8
0.4
当反应达到平衡状态时,混合气体中CH3OH体积分数(CH3OH)% =________%。
(4)在某压强下,反应III在不同温度、不同投料比时,CO2的平衡转化率如图所示。T1温度下,将6mol CO2和12mol H2充入2 L的密闭容器中,5min后反应达到平衡状态,则0~5min内的平均反应速率v(CH3OCH3)=____;KA、KB、KC三者之间的大小关系为____。
(5)恒压下将CO2和H2按体积比1:3混合,在不同催化剂作用下发生反应I和反应III,在相同的时间段内CH3OH的选择性和产率随温度的变化如图。其中:CH3OH的选择性=×100%
①温度高于230℃,CH3OH产率随温度升高而下降的原因是_________________。
②在上述条件下合成甲醇的工业条件是________________。
A.210℃ B.230℃ C.催化剂CZT D.催化剂CZ(Zr-1)T
【答案】(1)-122.6 (2分) (2)AC(2分) (3) 20(2分)
(4)0.18mol·L−1·min−1 (2分) KA=KC>KB(2分)
(5)反应I的△H<0温度升高,使CO2转化为CH3OH的平衡转化率下降(2分)
BD(2分)
【解析】(1)根据盖斯定律知,反应III=反应Ⅰ×2-反应Ⅱ,因此,△H3=△H1×2-△H2=-49.6 kJ/mol×2-23.4 kJ/mol=-122.6 kJ/mol;(2)反应条件为恒温恒容,反应I:CO2(g)+3H2(g) CH3OH(g)+H2O(g)为反应前后气体物质的量减少的反应。A项,该反应为反应前后气体物质的量减少的反应,随着反应的进行气体物质的量减少,体系总压强减小,因此当反应体系总压强保持不变时能说明反应I达到平衡状态,A项正确;Bv根据质量守恒定律知混合气体的总质量不变,容器容积也不变,则随着反应的进行,容器内的混合气体的密度始终保持不变,因此当反容器内的混合气体的密度保持不变时不能说明反应I达到平衡状,B项错误;C项,当水分子中断裂2NA个H-O键时会有3NA个H-H键形成,即生成3mol氢分子,若同时氢分子中断裂3NA个H-H键,即消耗3mol氢分子,则氢气的物质的量保持不变,反应达到平衡状态,因此水分子中断裂2NA个H-O键,同时氢分子中断裂3NA个H-H键能说明反应I达到平衡状,C项正确;D项,反应达到平衡状态时各物质的物质的量浓度保持不变,但CH3OH和H2O的浓度之比始终等于1:1,因此CH3OH和H2O的浓度之比保持不变不能说明反应I达到平衡状,D项正确;故选AC;(3)此刻反应的浓度商,因此反应向正反应方向进行,v正>v逆;设起始时CH3OCH3和H2O的物质的量均为a mol,反应达到平衡状态时,CH3OCH3的转化量为x mol,则可列出三段式:
CH3OCH3(g) + H2O(g) 2CH3OH(g)
起始(mol) a mol a mol 0
转化(mol) x mol x mol 2x mol
平衡(mol) (a-x)mol (a-x)mol 2x mol
则化学平衡常数,解得:x=0.2a,则混合气体中CH3OH的物质的量为0.4a,混合气体总物质的量不变仍为2a,因此混合气体中CH3OH体积分数;(4)由图可知,在T1温度下,将6 molCO2和12molH2充入2 L的密闭容器中时,CO2的平衡转化率为60%,因此CO2的转化量为6 mol×60%=3.6,则生成CH3OCH3的物质的量为1.8mol,;化学平衡常数只与温度有关,温度不变,化学平衡常数不变,则KA=KC,由图像可知,当投料比相同时,T1温度下的平衡转化率较大,该反应为正向放热的反应,降温平衡正向移动,化学平衡常数增大,因此T1
7.(15分)甲醇CH3OH)是一种重要的化工原料,工业上有多种方法可制得甲醇成品
(一)以CO、H2和CO2制备甲醇
①CO2(g)+H2(g) COg)+H2O(g) ∆H1
②CO(g)+2H2 (g) CH3OH(g) △H2
③CO2(g)+3H2(g) CH3OH(g)+H2O(g) ∆H3
(1)已知:反应①的化学平衡常数K和温度的关系如下表
t/℃
700
800
830
1000
1200
K
0.6
0.9
1.0
1.7
2.6
则下列说法正确的是______
A.反应①正反应是吸热反应
B.一定体积的密闭容器中,压强不再变化时,说明反应①达到平衡状态
C.1100℃时,反应①的K可能为1.5
D.在1000℃时,[c(CO2)·c(H2)]/[c(CO)·c(H2O)]约为0.59
(2)比较△H2_____△H3(填“>”、“=”或“<”)
(3)现利用②和③两个反应合成CH3OH,已知CO可使反应的催化剂寿命下降若氢碳比表示为f=[n(H2)-n(CO2)]/[n(CO)+n(CO2)],则理论上f=_____时,原料气的利用率高,但生产中住往采用略高于该值的氯碳比,理由是_________________________________.
(二)以天然气为原料,分为两阶段制备甲醇:
(i)制备合成气:CH4(g)+H2Og) CO(g)+3H2(g) ∆H1>0
(ii)合成甲醇:CO(g)+2H2(g) CH3OH(g) ∆H2>0
在一定压强下,1 mol CH4(g)和1 mol H2O(g)在三种不同催化剂作用下发生反应(i),经历相同时间时,CO的物质的量(n)随温度变化的关系如图1
(1)下列说法正确的是_______
A.曲线①中n(CO)随温度变化的原因是正反应为吸热反应,升高温度,平衡向右移动
B.三种催化剂中,催化剂③的催化效果最好,所以能获得最高的产率
C.当温度低于700℃时的曲线上的点可能都没有到达平衡
D.若温度大于700℃时,CO的物质的量保持不变
(2)500℃时,反应(1)在催化剂①的作用下到10mim时达到平衡,请在图2中画出反应(1)在此状态下0至12分钟内反应体系中H2的体积分数(H2)随时间t变化的总趋势___________________
(三)研究表明,CO也可在酸性条件下通过电化学的方法制备甲醇,原理如图3所示。
(1)产生甲醇的电极反应式为___________________;
(2)甲醇燃料电池应用很广,其工作原理如图4,写出电池工作时的负极反应式:___________。
【答案】(一)(1)AD(2分) (2)< (1分)
(3) 2 (1分) 使CO充分反应,避免反应催化剂寿命下降 (2分)
(二)(1)C(3分) (2) (2分)
(三)(1)CO+4H++4 e-= CH3OH(2分) (2)CH3OH+H2O-6e-=CO2+6H+(2分)
【解析】(一)(1)根据表格数据,温度越高,平衡常数越大,说明反应向正反应移动,正反应为吸热,A正确;反应①CO2(g)+H2(g) COg)+H2O(g)是反应前后气体体积不变的体系,压强不影响平衡移动,B错误;1000℃时K为1.7,温度越高,平衡常数越大,1100℃时K>1.7,C错误;在1000℃时,[c(CO2)·c(H2)]/[c(CO)·c(H2O)]为K的倒数,约为0.59,D正确;答案为AD。(2)随温度升高K1增大,说明反应①的正反应为吸热反应,△H1>0,盖斯定律计算得到△H3=△H1+△H2,则△H2<△H3。(3)由①CO(g)+2H2(g) CH3OH(g) ②CO2(g)+3H2(g) CH3OH(g)+H2O(g)化学方程式可知f =2,原料气的利用率最高,但生产中往往采用略高于该值的氢碳比,理由:使CO充分反应,避免反应催化剂寿命下降。
(二) (1)曲线①中n(CO)随温度升高而增大,反应逆向进行,正反应为放热,A错;催化剂③的使用时n(CO)变化量少,即CO转化率低,产率也不高,B错;当体系中各物质的物质的量保持不变时,反应平衡,根据图象,曲线上的点在不停地变化,反应没有达到平衡,C正确;温度大于700℃时,CO的物质的量曲线未画出,不一定保持不变,D错误。答案选C。(2)根据图一中CO的物质的量曲线及反应中H2生成和消耗的计量关系,0至12分钟内反应体系中生成物H2的体积分数(H2)随时间t变化的总趋势为
(三)(1)CO也可在酸性条件下通过电化学的方法制备甲醇,据图3可知,一氧化碳得电子生成甲醇,则产生甲醇的电极反应式为CO+4H++4 e-= CH3OH;(2)据图4可知,正极上氧气得电子和氢离子反应生成水,电极反应式为:3O2+12H++12e−=6H2O,负极上甲醇失电子和水反应生成二氧化碳和氢离子,电极反应式为2CH3OH−12e−+2H2O=2CO2↑+12H+,故答案为:CH3OH−6e−+H2O=CO2↑+6H+。
8.(15分)氮的化合物应用广泛,但其对环境造成污染进行治理已成为环境科学的重要课题。请回答下列问题:
(1)在汽车的排气管上加装催化转化装置可减少NOx的排放。研究表明,NOx的脱除率除与还原剂、催化剂相关外,还取决于催化剂表面氧缺位的密集程度。以La0.8A0.2BCoO3+X(A、B均为过渡元素)为催化剂,用H2还原NO的机理如下:
第一阶段:B4+(不稳定)+H2→低价态的金属离子(还原前后催化剂中金属原子的个数不变)
第二阶段:NO(g)+□→NO(a) ΔH1、K1
2NO(a)→2N(a)+O2(g) ΔH2、K2
2N(a)→N2(g)+2□ ΔH3、K3
2NO(a)→N2(g)+2O(a) ΔH4、K4
2O(a)→O2(g)+2□ ΔH5、K5
注:□表示催化剂表面的氧缺位,g表示气态,a表示吸附态
第一阶段用氢气还原B4+得到低价态的金属离子越多,第二阶段反应的速率越快,原因是_____。第二阶段中各反应焓变间的关系:2ΔH1+ΔH2+ΔH3=________;该温度下,NO脱除反应2NO(g)N2(g)+O2(g)的平衡常数K=_______(用K1、K2、K3的表达式表示)。
(2)为研究汽车尾气转化为无毒无害的物质有关反应,在密闭容器中充入10 mol CO和8mol NO,发生反应2NO(g)+2CO(g)N2(g)+2CO2(g) △H<0,如图为平衡时的体积分数与温度、压强的关系。
①该反应达到平衡后,为在提高反应速率同时提高的转化率,可采取的措施有_____________(填字母序号)
a.改用高效催化剂b.缩小容器的体积c.升高温度d.增加 CO的浓度
②压强为10MP、温度为T1下,若反应进行到达到平衡状态,容器的体积为4L,用CO2的浓度变化表示的平均反应速率v(CO2)=________,该温度下平衡常数Kp=______(用平衡分压代替平衡浓度计算,分压=总压物质的量分数;保留两位有效数字)。
③若在D点对反应容器降温的同时缩小体积至体系压强增大,达到的平衡状态可能是图中点中的_____点。
(3)近年来,地下水中的氮污染已成为一个世界性的环境问题。在金属Pt、Cu和铱(Ir)的催化作用下,密闭容器中的H2可高效转化酸性溶液中的硝态氮(NO3-),其工作原理如图所示
①Ir表面发生反应的方程式为_____________;若导电基体上的Pt颗粒增多,造成的后果是______________。
(4)实验室模拟“间接电化学氧化法”处理氨氮废水中NH4+的装置如图所示。以硫酸铵和去离子水配制成初始的模拟废水,并以NaCl调节溶液中氯离子浓度,阳极产物将氨氮废水中的NH4+氧化成空气中的主要成分。
阳极反应式为_______________ 除去NH4+的离子反应方程式为____________________。
【答案】(1)还原后催化剂中金属原子的个数不变,价态降低,氧缺位增多,反应速率加快(2分) 2ΔH1+ΔH4+ΔH5(1分) K12×K2×K3(1分)
(2)①bd(2分) 0.05mol/(L·min) (1分) 0.089 MPa-1(1分) G(1分)
(3)H2+N2ON2+H2O(2分) 若Pt颗粒增多,NO3-更多转化为NH4+存在溶液中,不利于降低溶液中含氮量,产生有污染的气体(2分)
(4)2Cl――2e―= Cl2↑(1分) 2NH4++3Cl2= 8H++N2↑+6Cl―(1分)
【解析】(1)还原后催化剂中金属原子的个数不变,价态降低,氧缺位增多,第二阶段反应速率加快;第二阶段:①NO(g)+□→NO(a) ΔH1、K1,②2NO(a)→2N(a)+O2(g) ΔH2、K2,③2N(a)→N2(g)+2□ ΔH3、K3,④2NO(a)→N2(g)+2O(a) ΔH4、K4,⑤2O(a)→O2(g)+2□ ΔH5、K5,根据盖斯定律,将①×2+②+③得到2NO(g)→O2(g)+ N2(g),将①×2+④+⑤得到2NO(g)→N2(g)+ O2(g),即2ΔH1+ΔH2+ΔH3=2ΔH1+ΔH4+ΔH5;因此2NO(g) N2(g)+O2(g)的平衡常数K=K12×K2×K3;(2)①该反应达到平衡后,为在提高反应速率同时提高NO的转化率,改变条件使平衡向正反应方向移动,a项,改用高效催化剂,催化剂只能改变反应速率,不能改变反应平衡,a项错误;b项,缩小容器的体积,相当于增大压强,此反应是体积减少的反应,平衡向正反应方向移动,所以提高反应速率同时提高NO的转化率,b项正确;c项,升高温度,反应速率提高,但该反应是放热反应,平衡向逆反应方向移动,c项错误;d项,增加CO的浓度,浓度增大,反应速率加快,平衡向正反应方向移动,d项正确,故选bd;②压强为10 MPa、温度为T1下,若反应进行到20 min达到平衡状态,对应图象E点,利用“三段式”来计算:2NO(g)+2CO(g) 2CO2(g)+N2(g)
初始时物质的量/mol 8 10 0 0
变化的物质的量/mol x x x 0.5x
平衡时物质的量/mol 8-x 10-x x 0.5x
NO的体积分数为25%,根据阿伏加德罗定律及推论,体积分数等于物质的量分数,(8-x)/( 8-x+10-x+x+0.5x)=25%,x=4,v(CO2)==0.05mol/(L·min),Kp=,PCO2=总压×物质的量分数=P总´ Mpa,同理其它物质的分压也可以用类似的方法来求出,然后带入Kp==0.089 MPa-1;③此反应是体积减少的放热反应,在D点对反应容器降温的同时缩小体积至体系压强增大,平衡向正反应方向移动,NO的体积分数降低,对应图象的G点。(3)在Ir表面上H2与N2O反应产生N2和水,反应方程式为H2+N2ON2+H2O;由原理的示意图可知,若导电基体上的Pt颗粒增多,则NO3-会更多的转化成铵根,不利于降低溶液中含氮量; (4)阳极发生氧化反应,氯离子放电生成氯气,电极反应式为:2Cl--2e-=Cl2↑;氯气具有氧化性,铵根离子中氮是-3价,具有还原性,能够被氯气氧化成氮气,氯气得电子生成-1价的氯离子,反应的离子方程式为2NH4++3Cl2=8H++N2↑+6Cl-。
9.25℃,向40 mL 0.05 mol/L的FeCl3溶液中加入10 mL 0.15 mol/L的KSCN溶液,发生反应,混合溶液中c(Fe3+)与反应时间(t)的变化如图所示。
下列说法正确的是
A.该反应的离子方程式为Fe3+ + 3SCN -Fe(SCN)3↓
B.E点对应的坐标为(0,0.05)
C.该反应的平衡常数K=
D.t4时向溶液中加入50 mL 0.1 mol/L KCl溶液,平衡不移动
【答案】C
【解析】A项,Fe(SCN)3为难电离的物质而不是沉淀,故离子方程式为Fe3+ + 3SCN - Fe(SCN)3,A错误;B项,40 mL 0.05 mol/L的FeCl3溶液中加入10 mL 0.15 mol/L的KSCN溶液,溶液总体积变为50 mL,此时Fe3+的初始浓度c(Fe3+)=,B错误;C项,根据化学反应,得:
平衡常数K= ,C正确;D项,t4时向溶液中加入50 mL 0.1 mol/L KCl溶液,相当于稀释了溶液,平衡逆向移动,D不正确。
10.(14分)碳及其化合物广泛存在于自然界。请回答下列问题:
(1)反应Ⅰ:Fe(s)+CO2(g) FeO(s)+CO(g) ΔH1 平衡常数为K1
反应Ⅱ:Fe(s)+H2O(g) FeO(s)+H2(g) ΔH2 平衡常数为K2
不同温度下,K1、K2的值如下表:
现有反应Ⅲ:H2(g)+CO2(g) CO(g)+H2O(g),结合上表数据,反应Ⅲ是_______ (填“放热”或“吸热”)反应。
(2)已知CO2催化加氢合成乙醇的反应原理为:
2CO2(g)+6H2(g) C2H5OH(g)+3H2O(g) ∆H<0。
设m为起始时的投料比,即m= n(H2)/ n(CO2)。
①图1中投料比相同,温度从高到低的顺序为______________________。
②图2中m1、m2、m3从大到小的顺序为________________________。
③图3表示在总压为5MPa的恒压条件下,且m=3时,平衡状态时各物质的物质的量分数与温度的关系。则曲线d代表的物质化学名称为______________,T4温度时,该反应平衡常数KP的计算式为(不必化简)_______________________。
(3)已知:NH3·H2O的Kb=1.7×10-5,H2CO3的Ka1=4.3×10-7、Ka2=5.6×10-11。工业生产尾气中的CO2捕获技术之一是氨水溶液吸收技术,工艺流程是将烟气冷却至15.5℃~26.5℃后用氨水吸收过量的CO2。所得溶液的pH___________7(填“>”、“=”或“<”)。烟气需冷却至15.5℃~26.5℃的可能原因是_________________________________。
(4)为了测量某湖水中无机碳含量,量取100mL湖水,酸化后用N2吹出CO2,再用NaOH溶液吸收。往吸收液中滴加1.0mol/L盐酸,生成的V(CO2)随V(盐酸)变化关系如图所示,则原吸收液中离子浓度由大到小的顺序为__________。
【答案】(1)吸热(1分) (2)①(2分) ②(2分)
③乙醇(1分) (2分)
(3)>(2分) 降低吸收过程中氨水的挥发,促进氨水对CO2的吸收(2分)
(4)c(Na+)> c(HCO3-) > c(CO32-) > c(OH-) > c(H+) (2分)
【解析】(1)由图可知反应①的K1随温度升高而增大,说明正反应为吸热反应,△H>0,反应②的K2随温度升高而减小,说明正反应为放热反应,△H<0,已知:①Fe(s)+CO2(g) FeO(s)+CO(g)△H1=Q1>0,②Fe(s)+H2O(g) FeO(s)+H2(g)△H2=Q2<0,由盖斯定律①-②得③H2(g)+CO2(g) CO(g)+H2O(g))△H=Q3=Q1-Q2>0,说明是吸热反应;(2)①反应为放热反应,温度越高转化率越小,则T3>T2>T1;②图2中m1、m2、m3投料比从大到小的顺序为m1>m2>m3,因相同温度下,增大氢气的量,平衡正向移动,二氧化碳的转化率增大;③温度升高,反应逆向进行,所以产物的物质的量是逐渐减少的,反应物的物质的量增大,由图可知,曲线a代表的物质为H2,b表示CO2,c为H2O,d表示乙醇;设开始氢气的投入量是3nmol,则二氧化碳是nmol,二氧化碳的转化量是x,则
2CO2(g)+6H2(g) C2H5OH(g)+3H2O(g)
起始量(mol) n 3n 0 0
变化量(mol) x 3x 0.5x 1.5x
平衡量(mol) n-x 3n-3x 0.5x 1.5x
P点a、c的体积分数相同,所以3n-3x=1.5x,解得x=n,总物质的量是n-x+3n-3x+0.5x+1.5x=n,总压为5MPa的恒压条件下,p(二氧化碳)=p(乙醇)=×5MPa=0.125×5MPa,p(氢气)=p(水)=×5MPa=0.375×5MPa,T4温度时,该反应的平衡常数Kp=;(3)工艺流程是将烟气冷却至15.5~26.5℃后用氨水吸收过量的CO2,该反应是一水合氨和二氧化碳反应生成碳酸氢铵,反应的化学方程式为:NH3•H2O+CO2=NH4HCO3,由NH3·H2O的Kb=1.7×10-5,H2CO3的Ka1=4.3×10-7、Ka2=5.6×10-11可知HCO3-的水解程度大于NH4+的水解程度,则所得溶液的pH>7;烟气需冷却至15.5~26.5℃的可能原因是:降低吸收过程中氨气挥发,促进氨水对二氧化碳的成分吸收;(4)为了测量某湖水中无机碳含量,量取100mL湖水,酸化后用N2吹出CO2,再用NaOH溶液吸收,图象分析可知,生成碳酸氢钠溶液和碳酸钠溶液,二者物质的量之比为1:1,且CO32-的水解程度大于HCO3-,则溶液中离子浓度大小为:c(Na+)>c(HCO3-)>c(CO32-)>c(OH-)>c(H+)。
2024年高考化学三轮冲刺考前巩固专题训练49 化学原理综合: 这是一份2024年高考化学三轮冲刺考前巩固专题训练49 化学原理综合,共52页。试卷主要包含了非选择题等内容,欢迎下载使用。
2024年高考化学三轮冲刺考前巩固专题训练49 化学原理综合答案: 这是一份2024年高考化学三轮冲刺考前巩固专题训练49 化学原理综合答案,共59页。试卷主要包含了非选择题等内容,欢迎下载使用。
2024年高考化学三轮冲刺考前巩固专题训练49 化学原理综合: 这是一份2024年高考化学三轮冲刺考前巩固专题训练49 化学原理综合,文件包含2024年高考化学三轮冲刺考前巩固专题训练49化学原理综合答案docx、2024年高考化学三轮冲刺考前巩固专题训练49化学原理综合docx等2份试卷配套教学资源,其中试卷共111页, 欢迎下载使用。