考点跟踪突破14 函数的应用课件PPT
展开
这是一份考点跟踪突破14 函数的应用课件PPT,共23页。PPT课件主要包含了a1+x2,-12,a+4等内容,欢迎下载使用。
考点跟踪突破14 函数的应用
一、选择题(每小题6分,共30分)1.(2013·青岛)已知矩形的面积为36 cm2,相邻的两条边长为x cm和y cm,则y与x之间的函数图象大致是( )
2.(2013·嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为( )A.直线x=1 B.直线x=-2C.直线x=-1 D.直线x=-4
5.某广场有一喷水池,水从地面喷出,如图,以水平面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米 B.3米 C.2米 D.1米
二、填空题(每小题6分,共30分)6.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .
7.(2013·山西)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平面交于A,B两点,桥拱最高点C到直线AB的距离为9 m,AB=36 m,D,E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为____m.
9.(2014·苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是____.
10.(2014·长春)如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C在抛物线上,且位于点A,B之间(C不与A,B重合).若△ABC的周长为a,则四边形AOBC的周长为____.(用含a的式子表示)
三、解答题(共40分)11.(10分)(2014·孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:
设按计划全部售出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.
(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.
12.(10分)(2014·湖州)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;
由图可知,当y=620时,x>50,∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨
13.(10分)(2013·哈尔滨)某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O,已知AB=8米,设抛物线解析式为y=ax2-4.
(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.
14.(10分)(2014·鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:
(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系;(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式;
相关课件
这是一份考点跟踪突破18 概率的应用课件PPT,共21页。
这是一份考点跟踪突破16 统计的应用课件PPT,共18页。
这是一份考点跟踪突破10 函数及其图象课件PPT,共22页。PPT课件主要包含了x≥-1且x≠0等内容,欢迎下载使用。