终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第02讲《有理数和数轴》同步讲学案

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第2讲 有理数和数轴(原卷版).docx
    • 第2讲 有理数和数轴(解析版).docx
    第2讲 有理数和数轴(原卷版)第1页
    第2讲 有理数和数轴(原卷版)第2页
    第2讲 有理数和数轴(原卷版)第3页
    第2讲 有理数和数轴(解析版)第1页
    第2讲 有理数和数轴(解析版)第2页
    第2讲 有理数和数轴(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第02讲《有理数和数轴》同步讲学案

    展开

    这是一份【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第02讲《有理数和数轴》同步讲学案,文件包含第2讲有理数和数轴解析版docx、第2讲有理数和数轴原卷版docx等2份教案配套教学资源,其中教案共29页, 欢迎下载使用。
    第2讲 有理数和数轴

    一、有理数的分类

    按照性质分类
    按照符号分类
    分类


    【注意】1. 所有的分数都是有理数;
    2. π是无理数,所以不是分数;
    3. 正数 和 0 统称为非负数; 负数 和 零 统称为非正数。

    题型一:有理数的概念
    【例1】在,,,0,中,有理数有(    )个.
    A.2 B.3 C.4 D.5
    【答案】C
    【分析】根据有理数的定义,即可求解,分数与整数统称为有理数.
    【详解】解:在,,,0,中,有理数有,,,0,共4个
    故选:C.
    【点睛】本题考查了有理数的定义,理解有理数的定义是解题的关键.
    [变式1]在数π,0,,,,25中,有理数有(    )个.
    A.2 B.3 C.4 D.5
    【答案】D
    【分析】根据有理数的概念进行解答.
    【详解】解:π不是有理数;
    0,25,是整数,属于有理数;
    是分数,属于有理数;
    ,,是有限小数,属于有理数;
    故有理数有0,,,,25,共5个.
    故选:D.
    【点睛】本题考查的是认识有理数问题,关键是能判断一个数是否是有理数.
    [变式2]下列结论正确的是(    )
    A.有理数包括正数和负数
    B.有理数包括整数和分数
    C.是最小的整数
    D.两个有理数的绝对值相等,则这两个有理数也相等
    【答案】B
    【分析】根据有理数的相关联的知识点分析判断即可.
    【详解】∵有理数包括正有理数,零和负有理数,
    ∴A错误,不符合题意;
    ∵有理数包括整数和分数,
    ∴B正确,符合题意;
    ∵没有最小的整数,
    ∴C错误,不符合题意;
    ∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,
    ∴D错误,不符合题意;
    故选B.
    【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.
    题型二:“0”的意义
    【例2】下列说法正确的是(    )
    A.0既不是正数,也不是负数 B.非负数就是正数
    C.一个数前面加上“”号这个数就是负数 D.正数和负数统称为有理数
    【答案】A
    【分析】根据有理数的有关概念判断即可.
    【详解】解:A、0既不是正数,也不是负数,故符合题意;
    B、非负数就是0和正数,故不符合题意;
    C、一个数前面加上“”号,这个数不一定是负数,如,故不符合题意;
    D、零和正数和负数统称为有理数,故不符合题意;
    故选:A.
    【点睛】此题考查有理数,关键是根据有理数的有关概念判断.
    [变式1]下列说法错误的是(    )
    A.0既不是正数,也不是负数
    B.零上4摄氏度可以写成,也可以写成
    C.若盈利100元记作元,则元表示亏损20元
    D.向正北走一定用正数表示,向正南走一定用负数表示
    【答案】D
    【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.
    【详解】解:A.0既不是正数,也不是负数,故选项正确,不符合题意;
    B.零上4摄氏度可以写成,也可以写成,故选项正确,不符合题意;
    C.若盈利100元记作元,则元表示亏损20元,故选项正确,不符合题意;
    D.规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.
    故选:D.
    【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.
    [变式2]下列语句正确的是(  )
    ①一个数前面加上“”号,这个数就是负数;
    ②如果是正数,那么一定是负数;
    ③一个有理数不是正的就是负的;
    ④表示没有温度;
    A.0个 B.1个 C.2个 D.3个
    【答案】B
    【分析】根据正负数的定义和0的意义进行逐一判断即可.
    【详解】解:①一个正数前面加上“”号,这个数就是负数,说法错误;
    ②如果是正数,那么一定是负数,说法正确;
    ③0是有理数,但是0既不是正数也不是负数,说法错误;
    ④表示有温度,说法错误;
    故选B.
    【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.
    题型三:有理数的分类
    【例3】下列说法中错误的是(  )
    A.圆周率π是无限不循环小数,它不是有理数 B.负整数和负分数统称为负有理数
    C.正有理数和负有理数组成全体有理数 D.不是分数,是整数
    【答案】C
    【分析】根据有理数的定义及分类方法分析即可.
    【详解】A.圆周率π是无限不循环小数,它不是有理数,正确,不符合题意;
    B.负整数和负分数统称为负有理数,正确,不符合题意;
    C.正有理数,0和负有理数组成全体有理数,故不正确,符合题意;
    D.不是分数,是整数,正确,不符合题意;
    故选C.
    【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.
    [变式1]在有理数中,整数一共有(    )
    A.2个 B.3个 C.4个 D.5个
    【答案】C
    【分析】根据整数的定义,即可得到答案.
    【详解】解:根据题意可得:属于整数,
    整数一共有4个,
    故选:C.
    【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.
    [变式2]是(   )
    A.有理数 B.整数 C.有限小数 D.无理数
    【答案】A
    【分析】根据有理数的分类,进行判断即可.
    【详解】解:是无限循环小数,是有理数;
    故选:A.
    【点睛】本题考查有理数的分类.熟练掌握有理数的分类方法,是解题的关键.
    题型四:“0”的意义
    【例4】下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④是无限循环小数;⑤正数中没有最小的数,负数中没有最大的数.其中错误的说法为(    )
    A.①②③④⑤ B.①②③④ C.②③④⑤ D.①②④⑤
    【答案】B
    【分析】根据有理数的分类进行分析解答即可.
    【详解】解:没有最小的整数,故①错误,
    0既不是正数也不是负数,但是有理数,故②错误,
    非负数是正数和0,故③错误,
    是有限小数,故④错误,
    正数中没有最小的数,负数中没有最大的数,故⑤正确,
    综上可知,错误的说法为①②③④,
    故选:B
    【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.
    [变式1]下列说法:
    ①是负分数;
    ②有理数不是正数就是负数;
    ③正整数、负整数、正分数、负分数统称为有理数;
    ④非正数就是负数;
    ⑤不仅是有理数,而且是分数;
    ⑥是无限不循环小数,所以不是有理数;
    ⑦无限小数不都是有理数.
    其中错误的说法的个数为(   )
    A. B. C. D.
    【答案】C
    【分析】根据有理数定义及分类、无理数定义逐项验证即可得到答案.
    【详解】解:①正确,是负分数;
    ②错误,有理数分为正数、负数和;
    ③错误,有理数分为整数与分数,整数分为正整数、负整数和;分数分为负分数与正分数;
    ④错误,非正数包含正数和;
    ⑤错误,是无理数;
    ⑥错误,是分数,属于有理数;
    ⑦正确,无限循环小数可以化为分数,属于有理数;无限不循环小数为无理数;
    综上所述,错误的说法有②③④⑤⑥,
    故选:C.
    【点睛】本题考查有理数定义及分类、无理数定义,熟记相关概念及分类是解决问题的关键.
    [变式2]给出下列各数:,,,,,,其中非负数的个数为(    )
    A. B. C. D.
    【答案】C
    【分析】根据题意,找出0或正数即可求解.
    【详解】解:在,,,,,,中,非负数有,,,,共4个,
    故选:C.
    【点睛】本题考查了有理数的分类,掌握非负数的意义是解题的关键.

    二、 数轴
    1. 数轴
    (1)概念:在数学中,可以用一条直线上的点表示数,它规定了原点、正方向和单位长度,这条直线叫做数轴;
    (2)三要素:
    ①原点:在直线上任取一个点表示数0,这个点叫做原点;
    ②正方向:通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为负方向;
    ③单位长度:直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3……;从原点向左,用类似的方法,依次表示-1,-2,-3……


    2. 数轴上的点与有理数的关系
    (1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
    (2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

    3. 利用数轴表示两数大小
    ①在数轴上数的大小比较,右边的数总比左边的数大;
    ②正数都大于0,负数都小于0,正数大于负数;
    ③两个负数比较,距离原点远的数比距离原点近的数小。

    4. 数轴上特殊的最大(小)数
    (1)最小的自然数是0,无最大的自然数;
    (2)最小的正整数是1,无最大的正整数;
    (3)最大的负整数是-1,无最小的负整数

    5. a可以表示什么数
    (1)a>0,表示a是正数;反之,a是正数,则a>0;
    (2)a

    相关教案

    【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第10讲《整式》同步讲学案:

    这是一份【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第10讲《整式》同步讲学案,文件包含第10讲整式解析版docx、第10讲整式原卷版docx等2份教案配套教学资源,其中教案共18页, 欢迎下载使用。

    【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第08讲《有理数的乘方》同步讲学案:

    这是一份【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第08讲《有理数的乘方》同步讲学案,文件包含第8讲有理数的乘方解析版docx、第8讲有理数的乘方原卷版docx等2份教案配套教学资源,其中教案共23页, 欢迎下载使用。

    【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第07讲《有理数的除法》同步讲学案:

    这是一份【暑假小初衔接】人教版数学六年级(六升七)暑假预习-第07讲《有理数的除法》同步讲学案,文件包含第7讲有理数的除法解析版docx、第7讲有理数的除法原卷版docx等2份教案配套教学资源,其中教案共18页, 欢迎下载使用。

    数学口算宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map