终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (新高考)高考数学一轮复习素养练习 第8章 第3讲 直线、平面平行的判定与性质 (含解析)

    立即下载
    加入资料篮
    (新高考)高考数学一轮复习素养练习 第8章 第3讲 直线、平面平行的判定与性质 (含解析)第1页
    (新高考)高考数学一轮复习素养练习 第8章 第3讲 直线、平面平行的判定与性质 (含解析)第2页
    (新高考)高考数学一轮复习素养练习 第8章 第3讲 直线、平面平行的判定与性质 (含解析)第3页
    还剩18页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习素养练习 第8章 第3讲 直线、平面平行的判定与性质 (含解析)

    展开

    这是一份(新高考)高考数学一轮复习素养练习 第8章 第3讲 直线、平面平行的判定与性质 (含解析),共21页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
    第3讲 直线、平面平行的判定与性质


    一、知识梳理
    1.直线与平面平行的判定定理和性质定理

    文字语言
    图形语言
    符号语言
    判定
    定理
    平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)

    因为l∥a,
    a⊂α,l⊄α,
    所以l∥α
    性质
    定理
    一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)

    因为l∥α,
    l⊂β,
    α∩β=b,
    所以l∥b
    2.平面与平面平行的判定定理和性质定理

    文字语言
    图形语言
    符号语言
    判定
    定理
    一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)

    因为a∥β,
    b∥β,a∩b=P,
    a⊂α,b⊂α,
    所以α∥β
    性质
    定理
    如果两个平行平面同时和第三个平面相交,那么它们的交线平行

    因为α∥β,
    α∩γ=a,
    β∩γ=b,
    所以a∥b
    常用结论
    1.三种平行关系的转化:
    线线平行线面平行面面性质定理平行
    线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.
    2.平行关系中的三个重要结论
    (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
    (2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
    (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
    二、教材衍化
    1.平面α∥平面β的一个充分条件是(  )
    A.存在一条直线a,a∥α,a∥β
    B.存在一条直线a,a⊂α,a∥β
    C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α
    D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
    解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.
    2.已知正方体ABCD­A1B1C1D1,下列结论中,正确的是________(只填序号).
    ①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.
    解析:连接AD1,BC1,AB1,B1D1,C1D,BD,因为ABC1D1,所以四边形AD1C1B为平行四边形,

    故AD1∥BC1,从而①正确;
    易证BD∥B1D1,AB1∥DC1,
    又AB1∩B1D1=B1,BD∩DC1=D,
    故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面.③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.
    答案:①②④

    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)直线l平行于平面α内的无数条直线,则l∥α.(  )
    (2)若直线l在平面α外,则l∥α.(  )
    (3)若直线l∥b,直线b⊂α,则l∥α.(  )
    (4)若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.(  )
    答案:(1)× (2)× (3)× (4)√
    二、易错纠偏
    (1)对空间平行关系的相互转化条件理解不够;
    (2)忽略线面平行、面面平行的条件.
    1.如果直线a∥平面α,那么直线a与平面α内的(  )
    A.一条直线不相交   
    B.两条直线不相交
    C.无数条直线不相交
    D.任意一条直线都不相交
    解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.
    2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.

    解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.
    答案:平行四边形

    考点一 线面平行的判定与性质(基础型)
    以立体几何的定义、公理和定理为出发点,认识和理解空间中直线与平面平行的有关性质与判定定理.
    核心素养:直观想象、逻辑推理
    角度一 线面平行的证明
    在正方体ABCD­A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:
    (1)BF∥HD1;
    (2)EG∥平面BB1D1D.
    【证明】 (1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,

    所以HD1∥MC1.
    又因为在平面BCC1B1中,BMFC1,
    所以四边形BMC1F为平行四边形,
    所以MC1∥BF,
    所以BF∥HD1.
    (2)取BD的中点O,连接EO,D1O,
    则OE∥DC且OE=DC,
    又D1G∥DC且D1G=DC,
    所以OED1G,
    所以四边形OEGD1是平行四边形,
    所以GE∥D1O.
    又D1O⊂平面BB1D1D,GE⊄平面BB1D1D,
    所以EG∥平面BB1D1D.

    证明直线与平面平行的常用方法
    (1)利用线面平行的定义.
    (2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明. 
    角度二 线面平行性质的应用
    如图,在五面体ABCDFE中,底面ABCD为矩形,EF∥AB,过BC的平面交棱FD于点P,交棱FA于点Q.
    证明:PQ∥平面ABCD.

    【证明】 因为底面ABCD为矩形,所以AD∥BC,
    ⇒BC∥平面ADF,
    ⇒BC∥PQ,
    PQ∥平面ABCD.

    应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行. 

    1.(2020·辽宁丹东质量测试(一))如图,直三棱柱ABC­A1B1C1中,∠BAC=90°,AB=AC=2,D,E分别为AA1,B1C的中点.证明:DE∥平面ABC.

    证明:取BC的中点F,
    连接AF,EF,
    则EF∥BB1,EF=BB1,所以EF∥DA,EF=DA,
    则四边形ADEF为平行四边形,所以DE∥AF.
    又因为DE⊄平面ABC,AF⊂平面ABC,所以DE∥平面ABC.
    2.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.

    (1)求证:AM∥平面BDE;
    (2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.
    解:(1)证明:如图,记AC与BD的交点为O,连接OE.

    因为O,M分别是AC,EF的中点,四边形ACEF是矩形,
    所以四边形AOEM是平行四边形,所以AM∥OE.
    又因为OE⊂平面BDE,AM⊄平面BDE,
    所以AM∥平面BDE.
    (2)l∥m,证明如下:由(1)知AM∥平面BDE,
    又AM⊂平面ADM,平面ADM∩平面BDE=l,
    所以l∥AM,同理,AM∥平面BDE,
    又AM⊂平面ABM,平面ABM∩平面BDE=m,
    所以m∥AM,所以l∥m.
    考点二 面面平行的判定与性质
    以立体几何的定义、公理和定理为出发点,认识和理解空间中平面与平面平行的有关性质与判定定理.
    核心素养:逻辑推理、直观想象
    如图所示,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:

    (1)B,C,H,G四点共面;
    (2)平面EFA1∥平面BCHG.
    【证明】 (1)因为G,H分别是
    A1B1,A1C1的中点,
    所以GH∥B1C1,又B1C1∥BC,
    所以GH∥BC,所以B,C,H,G四点共面.
    (2)在△ABC中,E,F分别为AB,AC的中点,
    所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.
    又因为G,E分别为A1B1,AB的中点,
    所以A1GEB,所以四边形A1EBG是平行四边形,
    所以A1E∥GB.
    因为A1E⊄平面BCHG,GB⊂平面BCHG,
    所以A1E∥平面BCHG.
    又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.
    【迁移探究1】 (变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.
    证明:如图所示,连接HD,A1B,

    因为D为BC1的中点,
    H为A1C1的中点,所以HD∥A1B,
    又HD⊄平面A1B1BA,
    A1B⊂平面A1B1BA,
    所以HD∥平面A1B1BA.
    【迁移探究2】 (变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.
    证明:如图所示,

    连接A1C交AC1于点M,
    因为四边形A1ACC1是平行四边形,
    所以M是A1C的中点,连接MD,
    因为D为BC的中点,
    所以A1B∥DM.
    因为A1B⊂平面A1BD1,DM⊄平面A1BD1,
    所以DM∥平面A1BD1.
    又由三棱柱的性质知,D1C1BD,
    所以四边形BDC1D1为平行四边形,
    所以DC1∥BD1.
    又DC1⊄平面A1BD1,BD1⊂平面A1BD1,
    所以DC1∥平面A1BD1,
    又因为DC1∩DM=D,DC1,DM⊂平面AC1D,
    所以平面A1BD1∥平面AC1D.

     

    1.如图,AB∥平面α∥平面β,过点A,B的直线m,n分别交α,β于点C,E和点D,F,若AC=2,CE=3,BF=4,则BD的长为(  )

    A.        B.
    C. D.
    解析:选C.由AB∥α∥β,易证 =.
    即=,所以BD===.
    2.(一题多解)如图,四边形ABCD是边长为3的正方形,ED⊥平面ABCD,AF⊥平面ABCD,DE=3AF=3.证明:平面ABF∥平面DCE.

    证明:法一:因为DE⊥平面ABCD,AF⊥平面ABCD,
    所以DE∥AF.
    因为AF⊄平面DCE,DE⊂平面DCE,
    所以AF∥平面DCE.
    因为四边形ABCD是正方形,所以AB∥CD.
    因为AB⊄平面DCE,
    所以AB∥平面DCE.
    因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,
    所以平面ABF∥平面DCE.
    法二:因为DE⊥平面ABCD,AF⊥平面ABCD,
    所以DE∥AF.
    因为四边形ABCD为正方形,
    所以AB∥CD.
    又AF∩AB=A,DE∩DC=D,
    所以平面ABF∥平面DCE.
    法三:因为DE⊥平面ABCD,
    所以DE⊥AD,在正方形ABCD中,AD⊥DC.
    又DE∩DC=D,
    所以AD⊥平面DEC.
    同理AD⊥平面ABF.
    所以平面ABF∥平面DCE.
    考点三 平行关系中的探索性问题
    能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
    核心素养:逻辑推理、直观想象
    如图,已知斜三棱柱ABC­A1B1C1中,点D,D1分别为AC,A1C1上的点.

    (1)当等于何值时,BC1∥平面AB1D1?
    (2)若平面BC1D∥平面AB1D1,求的值.
    【解】 (1)如图,取D1为线段A1C1的中点,此时=1,

    连接A1B交AB1于点O,连接OD1.
    由棱柱的性质,知四边形A1ABB1为平行四边形,
    所以点O为A1B的中点.
    在△A1BC1中,点O,D1分别为A1B,A1C1的中点,
    所以OD1∥BC1.
    又因为OD1⊂平面AB1D1,BC1⊄平面AB1D1,
    所以BC1∥平面AB1D1.
    所以当=1时,BC1∥平面AB1D1.
    (2)由已知,平面BC1D∥平面AB1D1,
    且平面A1BC1∩平面BDC1=BC1,
    平面A1BC1∩平面AB1D1=D1O.
    因此BC1∥D1O,同理AD1∥DC1.
    因为=,=.
    又因为=1,所以=1,即=1.

    解决探索性问题的方法
    (1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.
    (2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”. 
     (一题多解)如图,四棱锥E­ABCD,平面ABCD⊥平面ABE,四边形ABCD为矩形,AD=6,AB=5,BE=3,F为CE上的点,且BF⊥平面ACE.

    (1)求证:AE⊥BE;
    (2)设M在线段DE上,且满足EM=2MD,试在线段AB上确定一点N,使得MN∥平面BCE,并求MN的长.
    解:(1)证明:因为四边形ABCD为矩形,所以BC⊥AB.
    因为平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,且BC⊂平面ABCD,
    所以BC⊥平面ABE.
    又AE⊂平面ABE,所以BC⊥AE.
    因为BF⊥平面ACE,AE⊂平面ACE,
    所以BF⊥AE.
    又因为BC∩BF=B,BC⊂平面BCE,BF⊂平面BCE,
    所以AE⊥平面BCE,
    因为BE⊂平面BCE,
    所以AE⊥BE.
    (2)法一:如图,在△ADE中过M点作MG∥AD交AE于G点,在△ABE中过G点作GN∥BE交AB于N点,连接MN,

    因为NG∥BE,NG⊄平面BCE,BE⊂平面BCE,
    所以NG∥平面BCE.
    同理可证,GM∥平面BCE.
    因为MG∩GN=G,
    所以平面MGN∥平面BCE,
    又因为MN⊂平面MGN,
    所以MN∥平面BCE,
    因为N点为线段AB上靠近A点的一个三等分点,
    AD=6,AB=5,BE=3,
    所以MG=AD=4,NG=BE=1,
    所以MN===.
    法二:如图,过M点作MG∥CD交CE于G点,连接BG,在AB上取N点,使得BN=MG,连接MN,
    因为MG∥CD,EM=2MD,
    所以MG=CD,
    因为AB∥CD,BN=MG,
    所以四边形MGBN是平行四边形,
    所以MN∥BG,
    又因为MN⊄平面BCE,BG⊂平面BCE,

    所以MN∥平面BCE,
    又MG=CD,MG=BN,
    所以BN=AB,
    所以N点为线段AB上靠近A点的一个三等分点.
    在△CBG中,因为BC=AD=6,CG=CE==,cos∠BCG=,
    所以BG2=36+5-2×6××=17,
    所以MN=BG=.

    [基础题组练]
    1.若直线l不平行于平面α,且l⊄α,则(  )
    A.α内的所有直线与l异面
    B.α内不存在与l平行的直线
    C.α与直线l至少有两个公共点
    D.α内的直线与l都相交
    解析:选B.因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.
    2.(2020·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是(  )
    A.l⊂α,m⊂β,α∥β B.α∥β,α∩γ=l,β∩γ=m
    C.l∥α,m⊂α D.l⊂α,α∩β=m
    解析:选B.选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交,故选B.
    3.(2020·长沙市统一模拟考试)设a,b,c表示不同直线,α,β表示不同平面,下列命题:
    ①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.
    真命题的个数是(  )
    A.1 B.2
    C.3 D.4
    解析:选A.由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,根据a∥α,b∥α,可以推出a与b平行、相交或异面,故③是假命题;对于④,根据a⊂α,b⊂β.α∥β,可以推出a∥b或a与b异面,故④是假命题,所以真命题的个数是1,故选A.
    4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则(  )

    A.BD∥平面EFGH,且四边形EFGH 是矩形
    B.EF∥平面BCD,且四边形EFGH是梯形
    C.HG∥平面ABD,且四边形EFGH是菱形
    D.EH∥平面ADC,且四边形EFGH是平行四边形
    解析:选B.由AE∶EB=AF∶FD=1∶4知EFBD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HGBD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.
    5.在正方体ABCD­A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:

    ①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.
    其中推断正确的序号是(  )
    A.①③ B.①④
    C.②③ D.②④
    解析:选A.因为在正方体ABCD­A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,
    因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;
    因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;
    因为E,F,G分别是A1B1,B1C1,BB1的中点,
    所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,
    所以FG∥平面BC1D1,故③正确;
    因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.
    6.如图,正方体ABCD­A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于________.

    解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.
    故EF=AC=.
    答案:
    7.在下面给出的条件中,若条件足够推出a∥α,则在横线上填“OK”;若条件不能保证推出a∥α,则请在横线上补足条件:
    (1)条件:a∥b,b∥c,c⊂α,______,结论:a∥α;
    (2)条件:α∩β=b,a∥b,a⊂β,______,结论:a∥α.
    解析:因为a∥b,b∥c,c⊂α,所以由直线与平面平行的判定定理得,当a⊄α时,a∥α.因为α∩β=b,a∥b,a⊂β,则由直线与平面平行的判定定理得a∥α.
    答案:a⊄α OK
    8.在四面体A­BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
    解析:如图,取CD的中点E,连接AE,BE,

    则EM∶MA=1∶2,EN∶BN=1∶2,
    所以MN∥AB.
    因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,
    所以MN∥平面ABD,MN∥平面ABC.
    答案:平面ABD与平面ABC
    9.在如图所示的一块木料中,棱BC平行于平面A′B′C′D′.

    (1)要经过平面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?
    (2)所画的线与平面ABCD是什么位置关系?并证明你的结论.
    解: (1)过点P作B′C′的平行线,

    交A′B′,C′D′于点E,F,
    连接BE,CF.
    作图如右:
    (2)EF∥平面ABCD.理由如下:
    因为BC∥平面A′B′C′D′,
    又因为平面B′C′CB∩平面A′B′C′D′=B′C′,
    所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,
    又因为EF⊄平面ABCD,BC⊂平面ABCD,
    所以EF∥平面ABCD.
    10.(2020·南昌市摸底调研)如图,在四棱锥P­ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.

    (1)求证:平面CMN∥平面PAB;
    (2)求三棱锥P­ABM的体积.
    解:(1)证明:因为M,N分别为PD,AD的中点,
    所以MN∥PA,
    又MN⊄平面PAB,PA⊂平面PAB,
    所以MN∥平面PAB.
    在Rt△ACD中,∠CAD=60°,CN=AN,
    所以∠ACN=60°.
    又∠BAC=60°,
    所以CN∥AB.
    因为CN⊄平面PAB,AB⊂平面PAB,
    所以CN∥平面PAB.
    又CN∩MN=N,所以平面CMN∥平面PAB.
    (2)由(1)知,平面CMN∥平面PAB,
    所以点M到平面PAB的距离等于点C到平面PAB的距离.
    因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=,
    所以三棱锥P­ABM的体积V=VM­PAB=VC­PAB=VP­ABC=××1××2=.
    [综合题组练]
    1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为(  )

    A.AC⊥BD
    B.AC=BD
    C.AC∥截面PQMN
    D.异面直线PM与BD所成的角为45°
    解析:选B.因为截面PQMN是正方形,
    所以PQ∥MN,QM∥PN,
    则PQ∥平面ACD,QM∥平面BDA,
    所以PQ∥AC,QM∥BD,
    由PQ⊥QM可得AC⊥BD,故A正确;
    由PQ∥AC可得AC∥截面PQMN,故C正确;
    由BD∥PN,
    所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;
    由上面可知:BD∥PN,MN∥AC.
    所以=,=,
    而AN≠DN,PN=MN,
    所以BD≠AC.B错误.故选B.
    2.如图,透明塑料制成的长方体容器ABCD­A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:

    ①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在的平面平行;④当容器倾斜如图所示时,BE·BF是定值.
    其中正确的个数是(  )
    A.1 B.2
    C.3 D.4
    解析:选C.由题图,显然①是正确的,②是错的;
    对于③因为A1D1∥BC,BC∥FG,
    所以A1D1∥FG且A1D1⊄平面EFGH,
    所以A1D1∥平面EFGH(水面).
    所以③是正确的;
    因为水是定量的(定体积V).
    所以S△BEF·BC=V,
    即BE·BF·BC=V.
    所以BE·BF=(定值),
    即④是正确的,故选C.
    3.如图,在正方体ABCD­A1B1C1D1中判断下列位置关系:

    (1)AD1所在的直线与平面BCC1的位置关系是______;
    (2)平面A1BC1与平面ABCD的位置关系是______.
    解析:(1)AD1所在直线与平面BCC1的位置关系是平行.理由:AB∥C1D1,且AB=C1D1,可得四边形ABC1D1为平行四边形,即有AD1∥BC1,AD1⊄平面BCC1,BC1⊂平面BCC1,则AD1∥平面BCC1.

    (2)平面A1BC1与平面ABCD的位置关系是相交.理由:平面A1BC1与平面ABCD有一个交点B,由公理3得,如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点在一条直线上,这条直线为交线.如图,过点B作AC的平行线l,即为交线.
    答案:平行 相交
    4.在正四棱柱ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
    解析:如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.

    答案:Q为CC1的中点
    5.如图,四边形ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.

    (1)求证:BE∥平面DMF;
    (2)求证:平面BDE∥平面MNG.
    证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.

    (2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,
    所以DE∥平面MNG.
    又M为AB的中点,
    所以MN为△ABD的中位线,
    所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,
    所以BD∥平面MNG,
    又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.
    6. (2020·南昌二模)如图,四棱锥P­ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面PAB是等腰直角三角形,PA=PB,平面PAB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面PAD.

    (1)确定点E,F的位置,并说明理由;
    (2)求三棱锥F­DCE的体积.
    解:(1)因为平面CEF∥平面PAD,平面CEF∩平面ABCD=CE,
    平面PAD∩平面ABCD=AD,
    所以CE∥AD,又AB∥DC,
    所以四边形AECD是平行四边形,
    所以DC=AE=AB,
    即点E是AB的中点.
    因为平面CEF∥平面PAD,平面CEF∩平面PAB=EF,
    平面PAD∩平面PAB=PA,
    所以EF∥PA,又点E是AB的中点,
    所以点F是PB的中点.
    综上,E,F分别是AB,PB的中点.
    (2)连接PE,由题意及(1)知PA=PB,AE=EB,
    所以PE⊥AB,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
    所以PE⊥平面ABCD.
    又AB∥CD,AB⊥AD,
    所以VF­DEC=VP­DEC=S△DEC×PE=××2×2×2=.

    相关试卷

    (新高考)高考数学一轮复习素养练习 第8章 第4讲 直线、平面垂直的判定与性质 (含解析):

    这是一份(新高考)高考数学一轮复习素养练习 第8章 第4讲 直线、平面垂直的判定与性质 (含解析),共20页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    高考数学一轮复习考点突破讲与练 第8章 第3节 直线、平面平行的判定与性质 (含解析):

    这是一份高考数学一轮复习考点突破讲与练 第8章 第3节 直线、平面平行的判定与性质 (含解析),共12页。

    高中数学高考第3讲 直线、平面平行的判定与性质:

    这是一份高中数学高考第3讲 直线、平面平行的判定与性质,共19页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map