易错点21 参数与极坐标方程(学生版)-备战2022年高考数学考试易错题
展开
这是一份易错点21 参数与极坐标方程(学生版)-备战2022年高考数学考试易错题,共8页。试卷主要包含了,C与坐标轴交于A、B两点.等内容,欢迎下载使用。
易错点21 极坐标与参数方程易错点1:混淆圆和直线的参数方程;易错点2:忽视直线参数方程是否具有几何意义;易错点3:因忽视极坐标系下点的极坐标不唯一性致误;易错点4:用极坐标求交点时,忽视极径为零的情况;易错点5:混淆参数方程中的角与极坐标中的角的不同几何意义;易错点6:参数方程与极坐标方程互化时,忽视参数的范围.题组一:点到直线的距离1.(2019全国I理22)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值. 2.(2017新课标Ⅰ)在直角坐标系中,曲线的参数方程为,(为参数),直线的参数方程为(为参数).(1)若,求与的交点坐标;(2)若上的点到距离的最大值为,求. 3.【2017年高考江苏卷数学】在平面直角坐标系中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值.4.(2017新课标Ⅱ)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为.(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;(2)设点的极坐标为,点在曲线上,求面积的最大值. 题组二:直线与曲线相切5. 在直角坐标系中,圆心为,半径为1.(1)写出的一个参数方程;(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程. 6.(2014新课标Ⅱ)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为,.(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标. 题组三:直线与一曲线相交7.(2020•全国3卷)在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A、B两点.(1)求;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程. 8.(2016年全国II)在直角坐标系中,圆C的方程为.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程是(t为参数),l与C交于A、B两点,,求l的斜率.9.(2018全国卷Ⅱ)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率. 10.(2015新课标Ⅰ)在直角坐标系中,直线:,圆:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求,的极坐标方程;(Ⅱ)若直线的极坐标方程为,设与的交点为,,求的面积. 题组四:直线与两曲线相交11.(2016年全国I)在直角坐标系中,曲线的参数方程为(t为参数,a>0).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:.(I)说明是哪种曲线,并将的方程化为极坐标方程;(II)直线的极坐标方程为,其中满足,若曲线与的公共点都在 上,求a. 12.(2015新课标Ⅱ)在直角坐标系中,曲线:(为参数,≠0)其中,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线:,:.(Ⅰ)求与交点的直角坐标;(Ⅱ)若与相交于点A,与相交于点B,求的最大值. 题组五:两曲线相交13.(2020·新课标Ⅰ)在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)当时,是什么曲线?(2)当时,求与的公共点的直角坐标. 14.(2019全国III理22)如图,在极坐标系Ox中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.(1)分别写出,,的极坐标方程;(2)曲线由,,构成,若点在M上,且,求P的极坐标. 15.(2017新课标Ⅲ)在直角坐标系中,直线的参数方程为 (为参数),直线的参数方程为(为参数).设与的交点为,当变化时,的轨迹为曲线.(1)写出的普通方程;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设:,为与的交点,求的极径. 16.(2013新课标Ⅰ)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。(Ⅰ)把的参数方程化为极坐标方程;(Ⅱ)求与交点的极坐标(,). 题组六:求轨迹方程17.【2021年甲卷】 在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点. 18.(2020·新课标Ⅱ)已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程. 19.(2019全国II理22)在极坐标系中,O为极点,点在曲线 上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程. 20.(2018全国卷Ⅲ)在平面直角坐标系中,的参数方程为,(为参数),过点且倾斜角为的直线与交于,两点.(1)求的取值范围;(2)求中点的轨迹的参数方程. 1.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出的普通方程和的直角坐标方程;(Ⅱ)设点P在上,点Q在上,求的最小值及此时P的直角坐标. 2.已知曲线:,直线:(为参数).(Ⅰ) 写出曲线的参数方程,直线的普通方程;(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值. 3.已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.正方形的顶点都在上,且、、、依逆时针次序排列,点的极坐标为.(Ⅰ)求点、、、的直角坐标;(Ⅱ)设为上任意一点,求的取值范围. 4.在直角坐标系 中,曲线的参数方程为(为参数),M是上的动点,点满足,点的轨迹为曲线(Ⅰ)求的方程(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求. 5.已知动点,都在曲线: 上,对应参数分别为与()为的中点。(Ⅰ)求的轨迹的参数方程(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点。 6.在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程. 7.在平面直角坐标系xOy中,曲线的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)分别写出的普通方程与的直角坐标方程;(2)将曲线绕点按逆时针方向旋转90°得到曲线,若曲线与曲线交于A,B两点,求的值. 8.在直角坐标系中,曲线C的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为,A,B分别是曲线C,E上的动点.(1)求曲线C的极坐标方程;(2)求的最小值. 9.在平面直角坐标系中,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)过点的直线依次与两曲线交于,,,四点,且,求直线的普通方程. 10.在直角坐标系中,曲线C的参数方程为(t为参数).(1)将C的参数方程化为普通方程;(2)过点作C的两条切线,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,求这两条切线的极坐标方程.
相关试卷
这是一份易错点21 参数与极坐标方程(解析版)-备战2022年高考数学考试易错题,共19页。试卷主要包含了,C与坐标轴交于A、B两点.,由于M点在上,所以等内容,欢迎下载使用。
这是一份易错点11 球(学生版)-备战2022年高考数学考试易错题,共5页。试卷主要包含了已如A,在四边型中等内容,欢迎下载使用。
这是一份易错点17 双曲线(学生版)-备战2022年高考数学考试易错题,共6页。试卷主要包含了已知双曲线,已知,是双曲线等内容,欢迎下载使用。