


2010-2019年高考物理真题分专题训练 专题20 综合计算题 (学生版)
展开十年高考真题分类汇编(2010-2019) 物理
专题 20综合计算题
1.(2019•海南卷•T13)如图,用不可伸长轻绳将物块a悬挂在O点:初始时,轻绳处于水平拉直状态。现将a由静止释放,当物块a下摆至最低点时,恰好与静止在水平面上的物块b发生弹性碰撞(碰撞时间极短),碰撞后b滑行的最大距离为s。已知b的质量是a的3倍。b与水平面间的动摩擦因数为µ,重力加速度大小为g。求
(1)碰撞后瞬间物块b速度的大小;
(2)轻绳的长度。
2.(2019•全国Ⅲ卷•T12)静止在水平地面上的两小物块A、B,质量分别为mA=l.0kg,mB=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为u=0.20。重力加速度取g=10m/s²。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。
(1)求弹簧释放后瞬间A、B速度的大小;
(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?
(3)A和B都停止后,A与B之间的距离是多少?
3.(2019•北京卷•T12)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g。
(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W。
____
(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数。
a.设雨滴的密度为ρ,推导雨滴下落趋近的最大速度vm与半径r的关系式;
____
b.示意图中画出了半径为r1、r2(r1>r2)的雨滴在空气中无初速下落的v–t图线,其中_________对应半径为r1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v–t图线。
(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f ∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。
________
4.(2019•全国Ⅰ卷•T12)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图像如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。
(1)求物块B的质量;
(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前面动摩擦因数的比值。
θ
5.(2018·江苏卷)如图所示,钉子A、B相距5l,处于同一高度。细线的一端系有质量为M的小物块,另一端绕过A固定于B.质量为m的小球固定在细线上C点,B、C间的线长为3l.用手竖直向下拉住小球,使小球和物块都静止,此时BC与水平方向的夹角为53°.松手后,小球运动到与A、B相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g,取sin53°=0.8,cos53°=0.6.求:
(1)小球受到手的拉力大小F;
(2)物块和小球的质量之比M:m;
(3)小球向下运动到最低点时,物块M所受的拉力大小T.
6.(2018·北京卷)2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。某滑道示意图如下,长直助滑道AB与弯曲滑道BC平滑衔接,滑道BC高h=10 m,C是半径R=20 m圆弧的最低点,质量m=60 kg的运动员从A处由静止开始匀加速下滑,加速度a=4.5 m/s2,到达B点时速度vB=30 m/s。取重力加速度g=10 m/s2。
(1)求长直助滑道AB的长度L;
(2)求运动员在AB段所受合外力的冲量的I大小;
(3)若不计BC段的阻力,画出运动员经过C点时的受力图,并求其所受支持力FN的大小。
7.(2018·全国III卷·T12)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切。BC为圆弧轨道的直径。O为圆心,OA和OB之间的夹角为α,sinα=,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。重力加速度大小为g。求:
(1)水平恒力的大小和小球到达C点时速度的大小;
(2)小球到达A点时动量的大小;
(3)小球从C点落至水平轨道所用的时间。
8.(2018·新课标I卷)一质量为m的烟花弹获得动能E后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量,求
(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;
(2)爆炸后烟花弹向上运动的部分距地面的最大高度
9.(2016·海南卷)水平地面上有质量分别为m和4m的物A和B,两者与地面的动摩擦因数均为μ。细绳的一端固定,另一端跨过轻质动滑轮与A相连,动滑轮与B相连,如图所示。初始时,绳出于水平拉直状态。若物块A在水平向右的恒力F作用下向右移动了距离s,重力加速度大小为g。求:
(1)物块B克服摩擦力所做的功;
(2)物块A、B的加速度大小。
10.(2011·北京卷)如图所示,长度为l的轻绳上端固定在O点,下端系一质量为m的小球(小球的大小可以忽略)。
(1)在水平拉力F的作用下,轻绳与竖直方向的夹角为α,小球保持静止。画出此时小球的受力图,并求力F的大小;
(2)由图示位置无初速释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力。不计空气阻力。
11.(2016·四川卷)中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。
如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极。质子从K点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变。设质子进入漂移管B时速度为8×106 m/s,进入漂移管E时速度为1×107 m/s,电源频率为1×107 Hz,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的1/2。质子的荷质比取1×108 C/kg。求:
(1)漂移管B的长度;
(2)相邻漂移管间的加速电压。
12.(2011·上海卷)如图,质量的物体静止于水平地面的A处,A、B间距L=20m。用大小为30N,沿水平方向的外力拉此物体,经拉至B处。(已知,。取)
(1)求物体与地面间的动摩擦因数μ;
(2)用大小为30N,与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t。
13.(2012·福建卷)如图,用跨过光滑定滑轮的缆绳将海面上一搜失去动力的小船沿直线拖向岸边。已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计。求:
(1)小船从A点运动到B点的全过程克服阻力做的功Wf;
(2)小船经过B点时的速度大小;
(3)小船经过B点时的加速度大小a。
14.(2012·山东卷)如图所示,一工件置于水平地面上,其AB段为一半径R=1.0m的光滑圆弧轨道,BC段为一长度L=0.5m的粗糙水平轨道,二者相切与B点,整个轨道位于同一竖直平面内,P点为圆弧轨道上的一个确定点。一可视为质点的物块,其质量m=0.2kg,与BC间的动摩擦因数μ1=0.4。工件质量M=0.8kg,与地面间的动摩擦因数μ2=0.1。(取g=10m/s2)
(1)若工件固定,将物块由P点无初速度释放,滑至C点时恰好静止,求P、C两点间的高度差h。
(2)若将一水平恒力F作用于工件,使物块在P点与工件保持相对静止,一起向左做匀加速直线运动。
①求F的大小。
②当速度时,使工件立刻停止运动(即不考虑减速的时间和位移),物块飞离圆弧轨道落至BC段,求物块的落点与B点间的距离。
15.(2012·四川卷·T24)如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ = 37°,半径r = 2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E = 2×105N/C、方向垂直于斜轨向下的匀强电场。质量m= 5×10-2kg、电荷量q =+1×10-6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v0=3m/s冲上斜轨。以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。已知斜轨与小物体间的动摩擦因数μ=0.25。设小物体的电荷量保持不变,取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求弹簧枪对小物体所做的功;
(2)在斜轨上小物体能到达的最高点为P,求CP的长度。
16.(2012·新课标卷)拖把是由拖杆和拖把头构成的擦地工具(如图)。设拖把头的质量为m,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ。
(1)若拖把头在地板上匀速移动,求推拖把的力的大小。
(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动。求这一临界角的正切tanθ0。
17.(2012·浙江卷)为了研究鱼所受水的阻力与其形状的关系,小明同学用石蜡做成两条质量均为m、形状不同的“A鱼”和“B鱼”,如图所示。在高出水面H 处分别静止释放“A鱼”和“B鱼”,“A鱼”竖直下滑hA后速度减为零,“B鱼” 竖直下滑hB后速度减为零。“鱼”在水中运动时,除受重力外还受浮力和水的阻力,已知“鱼”在水中所受浮力是其重力的10/9倍,重力加速度为g,“鱼”运动的位移远大于“鱼”的长度。假设“鱼”运动时所受水的阻力恒定,空气阻力不计。求:
(1)“A鱼”入水瞬间的速度vA1;
(2)“A鱼”在水中运动时所受阻力fA;
(3)“A鱼”与“B鱼” 在水中运动时所受阻力之比fA:fB。
18.(2012·重庆卷)某校举行托乒乓球跑步比赛,赛道为水平直道,比赛距离为S。比赛时,某同学将球置于球拍中心,以大小为a的加速度从静止开始做匀加速直线运动,当速度达到v0时,再以v0做匀速直线运动跑至终点。整个过程中球一直保持在球拍中心不动。比赛中,该同学在匀速直线运动阶段保持球拍的倾角为θ0,如题25图所示。设球在运动中受到空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m,重力加速度为g。
(1)求空气阻力大小与球速大小的比例系数;
(2)求在加速跑阶段球拍倾角随速度变化的关系式;
(3)整个匀速跑阶段,若该同学速度仍为v0,而球拍的倾角比θ0大了β并保持不变,不计球在球拍上的移动引起的空气阻力变化,为保证到达终点前球不从球拍上距离中心为r的下边沿掉落,求β应满足的条件。
19.(2013·浙江卷)山谷中有三块大石头和一根不可伸长的青之青藤,其示意图如下。图中A、B、C、D均为石头的边缘点,O为青藤的固定点,h1=1.8m,h2=4.0m,x1=4.8m,x2=8.0m。开始时,质量分别为M=10kg和m=2kg的大小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头A点起水平跳到中间石头,大猴抱起小猴跑到C点,抓住青藤的下端荡到右边石头的D点,此时速度恰好为零。运动过程中猴子均看成质点,空气阻力不计,重力加速度g=10m/s2,求:
(1)大猴子水平跳离的速度最小值;
(2)猴子抓住青藤荡起时的速度大小;
(3)荡起时,青藤对猴子的拉力大小。
20.(2013·重庆卷)如题8图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合。转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°。重力加速度大小为g。
(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;
(2)ω=(1±k)ω0,且0<k <<1,求小物块受到的摩擦力大小和方向。21.(2015·山东卷·T23)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接。物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l。开始时物块和小球均静止,将此时传感装置的示数记为初始值。现给小球施加一始终垂直于l段细绳的力,将小球缓慢拉起至细绳与竖直方向成60o角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍.不计滑轮的大小和摩擦,重力加速度的大小为g。求:
(1)物块的质量;
(2)从释放到运动至最低位置的过程中,小球克服阻力所做的功。
22.(2015·浙江卷·T23)如图所示,用一块长的木板在墙和桌面间架设斜面,桌面高H=0.8m,长。斜面与水平桌面的倾角可在0~60°间调节后固定。将质量m=0.2kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数,物块与桌面间的动摩擦因数,忽略物块在斜面与桌面交接处的能量损失。(重力加速度取;最大静摩擦力等于滑动摩擦力)
(1)求角增大到多少时,物块能从斜面开始下滑;(用正切值表示)
(2)当增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数
(已知sin37°=0.6,cos37°=0.8)
(3)继续增大角,发现=53°时物块落地点与墙面的距离最大,求此最大距离。
23.(2015·海南卷·T14)如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点。已知h=2m,,s=。取重力加速度大小。
(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;
(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小。
24.(2015·重庆卷·T8)同学们参照伽利略时期演示平抛运动的方法制作了如题8图所示的实验装置。图中水平放置的底板上竖直地固定有M板和N板。M 板上部有一半径为的圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为.N板上固定有三个圆环.将质量为的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为处。不考虑空气阻力,重力加速度为.求:
(1)距Q水平距离为的圆环中心到底板的高度;
(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;
(3)摩擦力对小球做的功.
PQ
25.(2015·全国新课标Ⅰ卷·T25)一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1s时间内小物块的图线如图(b)所示。木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2。求
(1)木板与地面间的动摩擦因数及小物块与木板间的动摩擦因数;
(2)木板的最小长度;
(3)木板右端离墙壁的最终距离。
26.(2015·安徽卷·T24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况)。若A星体质量为2m,B、C两星体的质量均为m,三角形边长为a。求:
(1)A星体所受合力大小FA;
(2)B星体所受合力大小FB;
(3)C星体的轨道半径RC;
(4)三星体做圆周运动的周期T。
27.(2015·四川卷·T10)如图所示,粗糙、绝缘的直轨道OB固定在水平桌面上,B端与桌面边缘对齐,A是轨道上一点,过A点并垂直于轨道的竖直面右侧有大小E=1.5×106N/C,方向水平向右的匀强电场。带负电的小物体P电荷量是2.0×10-6C,质量m=0.25kg,与轨道间动摩擦因数μ=0.4,P从O点由静止开始向右运动,经过0.55s到达A点,到达B点时速度是5m/s,到达空间D点时速度与竖直方向的夹角为α,且tanα=1.2。P在整个运动过程中始终受到水平向右的某外力F作用,F大小与P的速率v的关系如表所示。P视为质点,电荷量保持不变,忽略空气阻力,取g=10 m/s2,求:
(1)小物体P从开始运动至速率为2m/s所用的时间;
(2)小物体P从A运动至D的过程,电场力做的功。
28.(2015·上海卷·T31)质量为m的小球在竖直向上的恒定拉力作用下,由静止开始从水平地面向上运动,经一段时间,拉力做功为W,此后撤去拉力,球又经相同时间回到地面,以地面为零势能面,不计空气阻力。求:
(1)球回到地面时的动能Ek;
(2)撤去拉力前球的加速度大小a及拉力的大小F;
(3)球动能为W/5时的重力势能Ep。
29.(2015·全国新课标Ⅱ卷·T25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示。假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变。已知A开始运动时,A离B下边缘的距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小g=10m/s2。求:
(1)在0~2s时间内A和B加速度的大小;
(2)A在B上总的运动时间。
30.(2015·北京卷·T23)如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计,物块(可视为质点)的质量为m,在水平桌面上沿x轴转动,与桌面间的动摩擦因数为,以弹簧原长时物块的位置为坐标原点O,当弹簧的伸长量为x时,物块所受弹簧弹力大小为F=kx,k为常量。
(1)请画出F随x变化的示意图:并根据F-x图像,求物块沿x轴从O点运动到位置x过程中弹力所做的功。
(2)物块由向右运动到,然后由返回到,在这个过程中。
a、求弹力所做的功;并据此求弹性势能的变化量;
b、求滑动摩擦力所做的功;并与弹力做功比较,说明为什么不存在与摩擦力对应的“摩擦力势能”的概念。
31.(2015·江苏卷·T14)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球以及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上,套在转轴上的轻质弹簧连接在O与小环之间,原长为L,装置静止时,弹簧长为3L/2,转动该装置并缓慢增大转速,小环缓慢上升。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g,求
(1)弹簧的劲度系数k;
(2)AB杆中弹力为零时,装置转动的角速度;
(3)弹簧长度从3L/2缓慢缩短为L/2的过程中,外界对转动装置所做的功W。
32.(2013·海南卷)一质量m=0.6kg的物体以v0=20m/s的初速度从倾角为30°的斜坡底端沿斜坡向上运动。当物体向上滑到某一位置时,其动能减少了ΔEk=18J,机械能减少了ΔE=3J,不计空气阻力,重力加速度g=10m/s2,求:
(1)物体向上运动时加速度的大小;
(2)物体返回斜坡底端时的动能。
33.(2013·福建卷)如图所示,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气阻力影响,求:
(1)地面上DC两点间的距离s;
(2)轻绳所受的最大拉力大小。
34.(2013·福建卷)质量为M、长为的杆水平放置,杆两端A、B系着长为3L的不可伸长且光滑的柔软绳,绳上套着一质量为m的小铁环。已知重力加速度为g,不计空气影响。
(1)现让杆和环均静止悬挂在空中,如图甲,求绳中拉力的大小;
(2)若杆与环保持相对静止,在空中沿AB方向水平向右做匀加速直线运动,此时环恰好悬于A端的正下方,如图乙所示。
①求此状态下杆的加速度大小a;
②为保持这种状态需在杆上施加一个多大的外力,方向如何?
35.(2013·安徽卷·T24)如图所示,质量为M、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k、自然长度为l的轻质弹簧相连,弹簧的另一端连接着质量为m的物块。压缩弹簧使其长度为时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态。重力加速度为。
(1)求物块处于平衡位置时弹簧的长度;
(2)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x表示物块相对于平衡位置的位移,证明物块做简谐运动;
(3)求弹簧的最大伸长量;
(4)为使斜面始终处于静止状态,动摩擦因数μ应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?
α36.(2011·福建卷)如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上端放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g.求:
(1)质量为m的鱼饵到达管口C时的速度大小v1;
(2)弹簧压缩到0.5R时的弹性势能Ep;
(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线OO’在角的范围内来回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在到m之间变化,且均能落到水面。持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?
37.(2016·四川卷)避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为与水平面夹角为的斜面。一辆长12 m的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s时,车尾位于制动坡床的低端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m时,车头距制动坡床顶端38 m,再过一段时间,货车停止。已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍。货物与货车分别视为小滑块和平板,取。求:
(1)货物在车厢内滑动时加速度的大小和方向;
(2)制动坡床的长度。
38.(2016·天津卷)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一。如图所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度vB=24 m/s,A与B的竖直高度差H=48 m。为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧。助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=–1 530 J,取g=10 m/s2。
(1)求运动员在AB段下滑时受到阻力Ff的大小;
(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大。
39.(2016·浙江卷)在真空环境内探测微粒在重力场中能量的简化装置如图所示。P是一个微粒源,能持续水平向 右发射质量相同、初速度不同的微粒。高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h。
(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;
(2)求能被屏探测到的微粒的初速度范围;
(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系。
40.(2016·江苏卷)如图所示,倾角为α的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A、B的质量均为m.撤去固定A的装置后,A、B均做直线运动.不计一切摩擦,重力加速度为g.求:
(1)A固定不动时,A对B支持力的大小N;
(2)A滑动的位移为x时,B的位移大小s;
(3)A滑动的位移为x时的速度大小vA.
41.(2016·上海卷)风洞是研究空气动力学的实验设备。如图,将刚性杆水平固定在风洞内距地面高度H=3.2 m处,杆上套一质量m=3 kg,可沿杆滑动的小球。将小球所受的风力调节为F=15 N,方向水平向左。小球以初速度v0=8 m/s向右离开杆端,假设小球所受风力不变,取g=10m/s2。求:
(1)小球落地所需时间和离开杆端的水平距离;
(2)小球落地时的动能。
(3)小球离开杆端后经过多少时间动能为78 J?
42.(2016·全国新课标Ⅰ卷)如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内。质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高点到达F点,AF=4R,已知P与直轨道间的动摩擦因数,重力加速度大小为g。(取)
(1)求P第一次运动到B点时速度的大小。
(2)求P运动到E点时弹簧的弹性势能。
(3)改变物块P的质量,将P推至E点,从静止开始释放。已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点。G点在C点左下方,与C点水平相距、竖直相距R,求P运动到D点时速度的大小和改变后P的质量。
43.(2016·全国新课标Ⅱ卷·T25)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l。现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接。AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示。物块P与AB间的动摩擦因数μ=0.5。用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动,重力加速度大小为g。
(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点间的距离;
(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围。
44.(2017·江苏卷)如图所示,两个半圆柱A、B紧靠着静置于水平地面上,其上有一光滑圆柱C,三者半径均为R.C的质量为m,A、B的质量都为,与地面的动摩擦因数均为μ.现用水平向右的力拉A,使A缓慢移动,直至C恰好降到地面.整个过程中B保持静止.设最大静摩擦力等于滑动摩擦力,重力加速度为g.求:
(1)未拉A时,C受到B作用力的大小F;
(2)动摩擦因数的最小值μmin;
(3)A移动的整个过程中,拉力做的功W.
45.(2017·新课标Ⅰ卷)一质量为8.00×104 kg的太空飞船从其飞行轨道返回地面。飞船在离地面高度1.60×105 m处以7.50×103 m/s的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面。取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2。(结果保留2位有效数字)
(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;
(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。
46.(2017·新课标Ⅱ卷)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1
(1)冰球与冰面之间的动摩擦因数;
(2)满足训练要求的运动员的最小加速度。
47.(2017·新课标Ⅲ卷·T25)(20分)如图,两个滑块A和B的质量分别为mA=1 kg和mB=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1。某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s。A、B相遇时,A与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2。求
(1)B与木板相对静止时,木板的速度;
(2)A、B开始运动时,两者之间的距离。
48.(2017·新课标Ⅰ卷)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0。在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变。持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点。重力加速度大小为g。
(1)求油滴运动到B点时的速度。
(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件。已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍。
49.(2015·安徽卷·T22)一质量为0.5 kg的小物块放在水平地面上的A点,距离A点5 m的位置B处是一面墙,如图所示。长物块以vo=9 m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7 m/s,碰后以6 m/s的速度把向运动直至静止。g取10 m/s2。
(1)求物块与地面间的动摩擦因数;
(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;
(3)求物块在反向运动过程中克服摩擦力所做的功W。
50.(2015·天津卷·T10)某快点公司分拣邮件的水平传输装置示意图如图,皮带在电动机的带动下保持的恒定速度向右运动,现将一质量为的邮件轻放在皮带上,邮件和皮带间的动摩擦力因数,设皮带足够长,取,在邮件与皮带发生相对滑动的过程中,求
(1)邮件滑动的时间t
(2)邮件对地的位移大小x
(3)邮件与皮带间的摩擦力对皮带做的功W
51.(2013·天津卷)质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数μ=0.2,g取10m/s²,求:
(1)物块在力F作用过程发生位移x1的大小;
(2)撤去力F后物块继续滑动的时间t。
52.(2011·安徽卷·T24)如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0=4 m/s,g取10m/s2。
(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
53.(2015·福建卷·T21)如图,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点,一质量为m的滑块在小车上从A点静止开始沿轨道滑下,重力加速度为g。
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车,已知滑块质量,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:
① 滑块运动过程中,小车的最大速度vm;
② 滑块从B到C运动过程中,小车的位移大小s。
54.(2015·广东卷·T36)如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短)。
(1)求A滑过Q点时的速度大小v和受到的弹力大小F;
(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;
(3)求碰后AB滑至第n个(n<k)光滑段上的速度vn与n的关系式。
55.(2011·广东卷·T36)如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板。滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长l =6.5R,板右端到C的距离L在R<L<5R范围内取值。E距A为S=5R,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g.
(1)求物块滑到B点的速度大小;
(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功Wf与L的关系,并判断物块能否滑到CD轨道的中点。
56.(2011·全国卷)装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对一下简化模型的计算可以粗略说明其原因。质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞。不计重力影响。
(1)子弹射穿质量为2m、厚度为2d的钢板后钢板的速度和此过程系统损失的机械能;
(2)子弹射穿质量为m、厚度为d的第一块钢板后的速度;
(3)子弹射入第二块钢板的深度
57.(2011·重庆卷)如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极短时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:
(1)整个过程中摩擦阻力所做的总功;
(2)人给第一辆车水平冲量的大小;
(3)第一次与第二次碰撞系统功能损失之比。
58.(2012·安徽卷·T24)如图所示,装置的左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量 M=2kg的小物块A。装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。传送带始终以n=2m/s 的速度逆时针转动。装置的右边是一光滑的曲面,质量m=1kg的小物块B从其上距水平台面h=1.0m处由静止释放。已知物块B与传送带之间的摩擦因数 n=0.2, f=1.0m。设物块A、B中间发生的是对心弹性碰撞,第一次碰撞前物块A静止且处于平衡状态。取g=10m/s2。
(1)求物块B与物块A第一次碰撞前的速度大小;
(2)通过计算说明物块B与物块A第一次碰撞后能否运动到右边曲面上?
(3)如果物块A、B每次碰撞后,物块A再回到平衡位置时都会立即被锁定,而当他们再次碰撞前锁定被解除,试求出物块B第n次碰撞后运动的速度大小。
1259.(2012·广东卷)图18(a)所示的装置中,小物块A、B质量均为m,水平面上PQ段长为l,与物块间的动摩擦因数为μ,其余段光滑。初始时,挡板上的轻质弹簧处于原长;长为r的连杆位于图中虚线位置;A紧靠滑杆(A、B间距大于2r)。随后,连杆以角速度ω匀速转动,带动滑杆作水平运动,滑杆的速度-时间图像如图18(b)所示。A在滑杆推动下运动,并在脱离滑杆后与静止的B发生完全非弹性碰撞。
(1)求A脱离滑杆时的速度,及A与B碰撞过程的机械能损失ΔE。
(2)如果AB不能与弹簧相碰,设AB从P点到运动停止所用的时间为t1,求ω的取值范围,及t1与ω的关系式。
(3)如果AB能与弹簧相碰,但不能返回到P点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为Ep,求ω的取值范围,及Ep与ω的关系式(弹簧始终在弹性限度内)。
60.(2012·新课标卷)如图,小球a、b用等长细线悬挂于同一固定点O。让球a静止下垂,将球b向右拉起,使细线水平。从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°。忽略空气阻力,求
(i)两球a、b的质量之比;
(ii)两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比。
61.(2013·新课标全国卷Ⅰ)在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d。现给A一初速度,使A与B发生弹性正碰,碰撞时间极短:当两木块都停止运动后,相距仍然为d。已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为g。求A的初速度的大小。62.(2013·重庆卷)在一种新的“子母球”表演中,让同一竖直线上的小球A和小球B,从距水平地面高度为ph(p>1)和h的地方同时由静止释放,如题9图所示。球A的质量为m,球B的质量为3m。设所有碰撞都是弹性碰撞,重力加速度大小为g,忽略球的直径、空气阻力及碰撞时间。
(1)求球B第一次落地时球A的速度大小;
(2)若球B在第一次上升过程中就能与球A相碰,求p的取值范围;
(3)在(2)情形下,要使球A第一次碰后能到达比其释放点更高的位置,求p应满足的条件。63.(2014·天津卷)如图所示,水平地面上静止放置一辆小车A,质量,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计。可视为质点的物块B置于A的最右端,B的质量。现对A施加一个水平向右的恒力F=10N,A运动一段时间后,小车左端固定的挡板B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到。求
(1)A开始运动时加速度a的大小;
(2)A、B碰撞后瞬间的共同速度v的大小;
(3)A的上表面长度l;
64.(2014·海南卷)一静止原子核发生衰变,生成一粒子及一新核。粒子垂直进入磁感应强度大小为B的匀强磁场,其运动轨迹是半径为R的圆。已知粒子的质量为m,电荷量为q;新核的质量为M;光在真空中的速度大小为c。求衰变前原子核的质量。
65.(2014·广东卷·T35)如图所示的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板。物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P。以此碰撞时刻为计时零点,探测器只在至内工作。已知P1、P2的质量都为,P与AC间的动摩擦因数为,AB段长,g取10m/s2。P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞。
(1)若,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能;
(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求的取值范围和P向左经过A点时的最大动能E。
66.(2018·江苏卷·T23)如图所示,真空中四个相同的矩形匀强磁场区域,高为4d,宽为d,中间两个磁场区域间隔为2d,中轴线与磁场区域两侧相交于O、O′点,各区域磁感应强度大小相等.某粒子质量为m、电荷量为+q,从O沿轴线射入磁场.当入射速度为v0时,粒子从O上方处射出磁场.取sin53°=0.8,cos53°=0.6.
(1)求磁感应强度大小B;
(2)入射速度为5v0时,求粒子从O运动到O′的时间t;
(3)入射速度仍为5v0,通过沿轴线OO′平移中间两个磁场(磁场不重叠),可使粒子从O运动到O′的时间增加Δt,求Δt的最大值.
67.(2018·江苏卷)如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为,间距为d.导轨处于匀强磁场中,磁感应强度大小为B,方向与导轨平面垂直.质量为m的金属棒被固定在导轨上,距底端的距离为s,导轨与外接电源相连,使金属棒通有电流.金属棒被松开后,以加速度a沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g.求下滑到底端的过程中,金属棒
(1)末速度的大小v;
(2)通过的电流大小I;
(3)通过的电荷量Q.
68.(2018·北京卷·T12) (1)静电场可以用电场线和等势面形象描述。
a.请根据电场强度的定义和库仑定律推导出点电荷Q的场强表达式;
b.点电荷的电场线和等势面分布如图所示,等势面S₁、S₂到点电荷的距离分别为r₁、r₂。我们知道,电场线的疏密反映了空间区域电场强度的大小。请计算S₁、S₂上单位面积通过的电场线条数之比N1/N2。
(2)观测宇宙中辐射电磁波的天体,距离越远单位面积接收的电磁波功率越小,观测越困难。为了收集足够强的来自天体的电磁波,增大望远镜口径是提高天文观测能力的一条重要路径。2016年9月25日,世界上最大的单口径球面射电望远镜FAST在我国贵州落成启用,被誉为“中国天眼”。FAST直径为500 m,有效提高了人类观测宇宙的精度和范围。
a.设直径为100 m的望远镜能够接收到的来自某天体的电磁波功率为P₁,计算FAST能够接收到的来自该天体的电磁波功率P₂;
b.在宇宙大尺度上,天体的空间分布是均匀的,仅以辐射功率为P的同类天体为观测对象,设直径为100 m望远镜能够观测到的此类天体数目是N0,计算FAST能够观测到的此类天体数目N。
,69.(2018·北京卷)如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电。改变变阻器R的阻值,路端电压U与电流I均随之变化。
(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义。
(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;
b.请推导该电源对外电路能够输出的最大电功率及条件。
(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和。
70.(2018·全国II卷)一足够长的条状区域内存在匀强电场和匀强磁场,其在xoy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xoy平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。
(1)定性画出该粒子在电磁场中运动的轨迹;
(2)求该粒子从M点射入时速度的大小;
(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。
71.(2018·天津卷)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计,ab和cd是两根与导轨垂直,长度均为l,电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m。列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示,为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自动关闭。
(1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并简要说明理由;
(2)求刚接通电源时列车加速度a的大小;
(3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。若某时刻列车的速度为,此时ab、cd均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?
72.(2018·天津卷)如图所示,在水平线ab下方有一匀强电场,电场强度为E,方向竖直向下,ab的上方存在匀强磁场,磁感应强度为B,方向垂直纸面向里,磁场中有一内、外半径分别为R、的半圆环形区域,外圆与ab的交点分别为M、N。一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出,不计粒子重力。
(1)求粒子从P到M所用的时间t;
(2)若粒子从与P同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出,粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度的大小。
73.(2018·全国III卷)如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直。已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l。不计重力影响和离子间的相互作用。求:
(1)磁场的磁感应强度大小;
(2)甲、乙两种离子的比荷之比。
74.(2018·新课标I卷)如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。11H的质量为m,电荷量为q不计重力。求
(1)11H第一次进入磁场的位置到原点O的距离
(2)磁场的磁感应强度大小
(3)12H第一次离开磁场的位置到原点O的距离
75.(2011·安徽卷)如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。
(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。
, 76.(2011·北京卷·T23)利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集。整个装置内部为真空。已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q。加速电场的电势差为U,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。
(1)求质量为m1的离子进入磁场时的速率v1;
(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;
(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,
可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离。设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处。离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且垂直于磁场。为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度。
77.(2011·北京卷)静电场方向平行于x轴,其电势φ随x的分布可简化为如图所示的折线,图中φ0和d为已知量。一个带负电的粒子在电场中以x=0为中心,沿x轴方向做周期性运动。已知该粒子质量为m、电量为-q,其动能与电势能之和为-A(0
(1)粒子所受电场力的大小;
(2)粒子的运动区间;
(3)粒子的运动周期。
78.(2011·福建卷)反射式速调管是常用的微波器械之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似。如图所示,在虚线两侧分别存在着方向相反的两个匀强电场,一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动。已知电场强度的大小分别是N/C和N/C,方向如图所示,带电微粒质量,带电量,A点距虚线的距离,不计带电微粒的重力,忽略相对论效应。求:
(1)B点到虚线的距离;
(2)带电微粒从A点运动到B点所经历的时间。
79.(2011·福建卷)如图甲,在x<0的空间中存在沿y轴负方向的匀强电场和垂直于xoy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射人,粒子的运动轨迹见图甲,不计粒子的重力。
(1)求该粒子运动到y=h时的速度大小v;
(2)现只改变人射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y-x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y-t关系)是简谐运动,且都有相同的周期T=。
Ⅰ.求粒子在一个周期内,沿轴方向前进的距离s;
Ⅱ.当入射粒子的初速度大小为v0时,其y-t图像如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y-t的函数表达式。
80.(2011·广东卷)如图19(a)所示,在以O为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,,一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。
(1)已知粒子从外圆上以速度射出,求粒子在A点的初速度的大小
(2)若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间
(3)在图19(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
81.(2011·海南卷)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好。求
(1)细线烧断后,任意时刻两杆运动的速度之比;
(2)两杆分别达到的最大速度。
82.(2011·辽宁卷)如图,在区域I()和区域II()内分别存在匀强磁场,在磁感应强度大小封闭为B和2B,方向相反,垂直于Oxy平面,一质量为m、带电荷量q()的粒子a于某时刻y轴上的P点射入区域I,其速度方向垂直x轴正向,已知a在离开区域I时,速度方向与x轴放方向的夹角为30°;因此,另一质量和电荷量均与a相同的粒子b也从P点沿x轴正方向的射入区域I,其速度是a的,不计重力和两粒子之间的相互作用力,求
(1)粒子a射入区域I的速度的大小。
(2)当a离开区域II时,a、b两粒子的y坐标之差。
83.(2011·全国卷)如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g。求:
(1)磁感应强度的大小。
(2)灯泡正常发光时导体棒的运动速率。
84.(2011·全国卷)如图,与水平面成45°角的平面MN将空间分成I和II两个区域。一质量为m、电荷量为q(q>0)的粒子以速度v0从平面MN上的P0点水平向右射入I区。粒子在I区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E;在II区运动时,只受到匀强磁场的作用,磁感应强度大小为B,方向垂直于纸面向里。求粒子首次从II区离开时到出发点P0的距离。粒子的重力可以忽略。
85.(2011·山东卷)扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图Ⅰ、Ⅱ两处的条形均强磁场区边界竖直,相距为L,磁场方向相反且垂直纸面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角
(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为,求B0及粒子在Ⅰ区运动的时间t0
(2)若Ⅱ区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h
(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件
(4)若,且已保证了粒子能从Ⅱ区右边界射出。为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射入的方向总相同,求B1、B2、L1、、L2、之间应满足的关系式。
86.(2011·上海卷)电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热。(取)求:
(1)金属棒在此过程中克服安培力的功;
(2)金属棒下滑速度时的加速度.
(3)为求金属棒下滑的最大速度,有同学解答如下:由动能定理,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。
87.(2011·四川卷)如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37º的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场。电阻R=0.3Ω、质量m1=0.1kg、长为l 的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环。已知小环以a=6m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动。不计导轨电阻和滑轮摩擦,绳不可伸长。取g=10 m/s2,sin37º=0.6,cos37º=0.8。求
(1)小环所受摩擦力的大小;
(2)Q杆所受拉力的瞬时功率。
88.(2011·四川卷)如图所示,正方形绝缘光滑水平台面WXYZ边长l=1.8m,距地面h=0.8m。平行板电容器的极板CD间距d=0.1m且垂直放置于台面。C板位于边界WX上,D板与边界WZ相交处有一小孔。电容器外的台面区域内有磁感应强度B=1T,方向竖直向上的匀强磁场。电荷量q=5×10-13C的微粒静止于W处,在CD间加上恒定电压U=2.5V,板间微粒经电场加速后由D板所开小孔进入磁场(微粒始终不与极板接触),然后由XY边界离开台面。在微粒离开台面瞬时,静止于X正下方水平地面上A点的滑块获得一水平速度,在微粒落地时恰好与之相遇。假定微粒在真空中运动、极板间电场视为匀强电场,滑块视为质点。滑块与地面间的动摩擦因数μ=0.2,取g=10m/s2。
(1)求微粒在极板间所受电场力的大小并说明两板的极性;
(2)求由XY边界离开台面的微粒的质量范围;
(3)若微粒质量m0=1×10-13kg,求滑块开始运动所获得的速度。
θ89.(2011·天津卷)回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。
(1)当今医学成像诊断设备PET/CT堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产生另一粒子,试写出核反应方程。若碳11的半衰期τ为20min,经2.0h剩余碳11的质量占原来的百分之几?(结果取2位有效数字)
(2)回旋加速器的原理如图,D1和D2是两个中空的半径为R的半圆金属盒,它们接在电压一定、频率为f的交流电源上,位于D1圆心处的质子源A能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D1、D2置于与盒面垂直的磁感应强度为B的匀强磁场中。若质子束从回旋加速器输出时的平均功率为P,求输出时质子束的等效电流I与P、B、R、f的关系式(忽略质子在电场中运动的时间,其最大速度远小于光速)
(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道的半径之差是增大、减小还是不变?
、
90.(2011·浙江卷)如图甲所示,在水平面上固定有长为L=2m、宽为d=1m的金属“U”型轨导,在“U”型导轨右侧l=0.5m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示。在t=0时刻,质量为m=0.1kg的导体棒以v0=1m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取)。
(1)通过计算分析4s内导体棒的运动情况;
(2)计算4s内回路中电流的大小,并判断电流方向;
(3)计算4s内回路产生的焦耳热。
91.(2011·重庆卷)某仪器用电场和磁场来控制电子在材料表面上方的运动。如图所示,材料表面上方矩形区域PP'N'N充满竖直向下的匀强电场,宽为d;矩形区域NN'M′M充满垂直纸面向里的匀强磁场,磁感应强度为B,长为3s,宽为s;NN'为磁场与电场之间的薄隔离层。一个电荷量为e、质量为m、初速为零的电子,从P点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M'N'飞出。不计电子所受重力。
(1)求电子第二次与第一次圆周运动半径之比;
(2)求电场强度的取值范围;
(3)A是M′N′的中点,若要使电子在A、M ′间垂直于AM ′飞出,求电子在磁场区域中运动的时间。
92.(2012·福建卷)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B的匀强磁场,在此区域内,沿水平面固定一半径为r的圆环形光滑细玻璃管,环心0在区域中心。一质量为m、带电量为q(q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B随时间t的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求t=T0 到t=1.5T0 这段时间内:
①细管内涡旋电场的场强大小E;
②电场力对小球做的功W。
93.(2012·广东卷)如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属轨道上。导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板。R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。
(1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v。
(2)改变Rx,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的Rx。
94.(2012·江苏卷·T15)如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l的相同平行金属板构成,极板长度为l、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.
(1)求粒子射出平移器时的速度大小v1;
(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U;
(3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.
请推测该区域中电场强度和磁感应强度的大小及可能的方向.
95.(2012·山东卷)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0。在t=0时刻将一个质量为m、电量为-q(q >0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t= T0/2时刻通过S2垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达S2时的速度大小v和极板距离d。
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小
96.(2012·四川卷·T25)如图所示,水平虚线X下方区域分布着方向水平、垂直纸面向里、磁感应强度为B的匀强磁场,整个空间存在匀强电场(图中未画出)。质量为m,电荷量为+q的小球P静止于虚线X上方A点,在某一瞬间受到方向竖直向下、大小为I的冲量作用而做匀速直线运动。在A点右下方的磁场中有定点O,长为l的绝缘轻绳一端固定于O点,另一端连接不带电的质量同为m的小球Q,自然下垂。保持轻绳伸直,向右拉起Q,直到绳与竖直方向有一小于50的夹角,在P开始运动的同时自由释放Q,Q到达O点正下方W点时速度为v0。P、Q两小球在W点发生正碰,碰后电场、磁场消失,两小球粘在一起运动。P、Q两小球均视为质点,P小球的电荷量保持不变,绳不可伸长,不计空气阻力,重力加速度为g。
(1)求匀强电场场强E的大小和P进入磁场时的速率v;
(2)若绳能承受的最大拉力为F,要使绳不断,F至少为多大?
(3)求A点距虚线X的距离s。
97.(2012·天津卷)对铀235的进一步研究在核能的开发和利用中具有重要意义。如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动。离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I。不考虑离子重力及离子间的相互作用。
(1)求加速电场的电压U;
(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;
(3)实际上加速电压的大小会在U+ΔU范围内微小变化。若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)
98.(2012·天津卷)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l = 0.5m,左端接有阻值R = 0.3Ω的电阻。一质量m = 0.1kg,电阻r = 0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B = 0.4T。棒在水平向右的外力作用下,由静止开始以 a = 2m/s2的加速度做匀加速运动,当棒的位移x = 9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2 = 2:1。导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。求
(1)棒在匀加速运动过程中,通过电阻R的电荷量q;
(2)撤去外力后回路中产生的焦耳热Q2;
(3)外力做的功WF。
(1)联立以上各式,代入数据解得:
99.(2012·新课标卷)如图,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为。现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。
100.(2012·浙江卷)如图所示,二块水平放置、相距为d的长金属板接在电压可调的电源上。两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴。调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动,进入电场、磁场共存区域后,最终垂直打在下板的M点。
(1)判断墨滴所带电荷的种类,并求其电荷量;
(2)求磁感应强度B的值;
(3)现保持喷口方向不变,使其竖直下移到两板中间位置。为了使墨滴仍能到达下板M点应将磁感应强度调至B',则B'的大小为多少?
(3)根据题设,墨滴圆周运动轨迹如图,设圆周运动半径为,有
101.(2012·浙江卷·T25)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置,如图所示,自行车后轮由半径r1=5.0╳10-2m的金属内圈、半径r2=0.40m的金属内圈和绝缘辐条构成。后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡。在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=π/6。后轮以角速度ω=2π rad/s相对于转轴转动。若不计其它电阻,忽略磁场的边缘效应。
(1)当金属条ab进入“扇形” 磁场时,求感应电动势E,并指出ab上的电流方向;
(2)当金属条ab进入“扇形” 磁场时,画出“闪烁”装置的电路图;
(3)从金属条ab进入“扇形” 磁场开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差Uab-t图象;
(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价。
102.(2013·天津卷)一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中。粒子与圆筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移2d/3,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
103.(2013·天津卷)超导体现象是20世纪人类重大发现之一,目前我国已研制出世界传输电流最大的高温超导电缆并成功示范运行。
(1)超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究。将一个闭合超导金属圆环水平放置在匀强磁场中,磁感线垂直于圆环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化,则表明其电阻为零。请指出自上往下看环中电流方向,并说明理由。
(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化。实际上仪器只能检测出大于ΔI的电流变化,其中ΔI<<I ,当电流的变化小于ΔI时,仪器检测不出电流的变化,研究人员便认为电流没有变化。设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e。试用上述给出的各物理量,推导出ρ的表达式。
(3)若仍试用上述测量仪器,实验持续时间依旧为t,为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法。
104.(2013·浙江卷·T25)为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨。潜艇下方有左、右两组推进器,每组由6个相同的用绝缘材料制成的直线通道推进器构成,其原理示意图如下。在直线通道内充满电阻率ρ=0.2Ω∙m的海水,通道中a×b×c=0.3m×0.4m×0.3m的空间内,存在由超导线圈产生的匀强磁场,其磁感应强度B=6.4T、方向垂直通道侧面向外。磁场区域上、下方各有a×b=0.3mx0.4m的金属板M、N,当其与推进器专用直流电源相连后,在两板之间的海水中产生了从N到M,大小恒为I=1.0×103A的电流,设电流只存在于磁场区域。不计电源内阻及导线电阻,海水密度ρ=1.0×103kg/m3。
(1)求一个直线通道推进器内磁场对通电海水的作用力大小,并判断其方向。
(2)在不改变潜艇结构的前提下,简述潜艇如何转弯?如何倒车?
(3)当潜艇以恒定速度v0=30m/s前进时,海水在出口处相对于推进器的速度v=34m/s,思考专用直流电源所提供的电功率如何分配,求出相应功率的大小。
105.(2014·安徽卷)如图所示,充电后的平行板电容器水平放置,电容为C,极板间的距离为d,上板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g)。求:
(1)小球到达小孔处的速度;
(2)极板间电场强度的大小和电容器所带电荷量;
(3)小球从开始下落运动到下极板处的时间。
106.(2014·全国大纲卷)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy平面)向外;在第四象限存在匀强电场,方向沿x轴负向。在y轴正半轴上某点以与x轴正向平行、大小为v0的速度发射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x轴的方向进人电场。不计重力。若该粒子离开电场时速度方向与y轴负方向的夹角为θ,求:
(1)电场强度大小与磁感应强度大小的比值;
(2)该粒子在电场中运动的时间。
107.(2014·四川卷)在如图所示的竖直平面内。水平轨道CD和倾斜轨道GH与半径r =m的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角θ = 37°。过G点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B = 1.25T;过D点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E = 1×104N/C。小物体P1质量m = 2×10-3kg、电荷量q = +8×10-6C,受到水平向右的推力F = 9.98×10-3N的作用,沿CD向右做匀速直线运动,到达D点后撤去推力。当P1到达倾斜轨道底端G点时,不带电的小物体P2在GH顶端静止释放,经过时间t = 0.1s与P1相遇。P1和P2与轨道CD、GH间的动摩擦因数均为= 0. 5,取g = 10m/s2,sin37° = 0.6,cos37°= 0.8,物体电荷量保持不变,不计空气阻力。求:
(1)小物体P1在水平轨道CD上运动速度v的大小;
(2)倾斜轨道GH的长度s。
108.(2014·新课标全国卷Ⅰ)如图,O、A、B为同一竖直平面内的三个点,OB沿竖直方向,,.将一质量为m的小球以一定的初动能自O点水平向右抛出,小球在运动过程中恰好通过A点。使此小球带电,电荷量为q(q>0),同时加一匀强电场,场强方向与所在平面平行,现从O点以同样的初动能沿某一方向抛出此带点小球,该小球通过了A点,到达A点时的动能是初动能的3倍;若该小球从O点以同样的初动能沿另一方向抛出,恰好通过B点,且到达B点的动能为初动能的6倍,重力加速度大小为g。求
(1)无电场时,小球达到A点时的动能与初动能的比值;
(2)电场强度的大小和方向。OABOBMAMAOCMAOBOBOA109.(2014·四川卷)如图所示,水平放置的不带电的平行金属板p和b相距h,与图示电路相连,金属板厚度不计,忽略边缘效应。p板上表面光滑,涂有绝缘层,其上O点右侧相距h处有小孔K;b板上有小孔T,且O、T在同一条竖直线上,图示平面为竖直平面。质量为m、电荷量为- q(q > 0)的静止粒子被发射装置(图中未画出)从O点发射,沿P板上表面运动时间t后到达K孔,不与板碰撞地进入两板之间。粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g。
(1)求发射装置对粒子做的功;
(2)电路中的直流电源内阻为r,开关S接“1”位置时,进入板间的粒子落在h板上的A点,A点与过K孔竖直线的距离为l。此后将开关S接“2”位置,求阻值为R的电阻中的电流强度;
(3)若选用恰当直流电源,电路中开关S接“l”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B只能在0~Bm=范围内选取),使粒子恰好从b板的T孔飞出,求粒子飞出时速度方向与b板板面夹角的所有可能值(可用反三角函数表示)。
110.(2014·广东卷)如图25所示,足够大的平行挡板A1、A2竖直放置,间距6L。两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN为理想分界面,Ⅰ区的磁感应强度为B0,方向垂直纸面向外。A1、A2上各有位置正对的小孔S1、S2,两孔与分界面MN的距离均为L,质量为m、电荷量为+q的粒子经宽度为d的匀强电场由静止加速后,沿水平方向从S1进入Ⅰ区,并直接偏转到MN上的P点,再进入Ⅱ区,P点与A1板的距离是L的k倍。不计重力,碰到挡板的粒子不予考虑。
(1)若k=1,求匀强电场的电场强度E;
(2)若,且粒子沿水平方向从S2射出,求出粒子在磁场中的速度大小v与k的关系式和Ⅱ区的磁感应强度B与k的关系式。
得得111.(2014·江苏卷)某装置用磁场控制带电粒子的运动,工作原理如图所示。装置的长为 L,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,两磁场的间距为d。装置右端有一收集板,M、N、P为板上的三点,M位于轴线OO′上,N、P分别位于下方磁场的上、下边界上。在纸面内,质量为m、电荷量为-q的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P点。改变粒子入射速度的大小,可以控制粒子到达收集板上的位置。不计粒子的重力。
(1)求磁场区域的宽度h;
(2)欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量Δv;
(3)欲使粒子到达M点,求粒子入射速度大小的可能值。
112.(2014·天津卷)同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图所示的模型。M、N为两块中心开有小孔的平行金属板。质量为m、电荷量为+q的粒子A(不计重力)从M板小孔飘入板间,初速度可视为零,每当A进入板间,两板的电势差变为U,粒子得到加速,当A离开N板时,两板的电荷量均立即变为零。两板外部存在垂直纸面向里的匀强磁场,A在磁场作用下做半径为R的圆周运动,R远大于板间距离,A经电场多次加速,动能不断增大,为使R保持不变,磁场必须相应地变化。不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应。求
(1)A运动第1周时磁场的磁感应强度B1的大小;
(2)在A运动第n周的时间内电场力做功的平均功率;
(3)若有一个质量也为m、电荷量为+kq(k为大于1的整数)的粒子B(不计重力)与A同时从M板小孔飘入板间,A、B初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变,下图中虚线、实线分别表示A、B的运动轨迹。在B的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A、B的运动轨迹,并经推导说明理由。
113.(2014·山东卷·T24)如图甲所示,间距为d、垂直于纸面的两平行板P、Q间存在匀强磁场。取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示。t=0时刻,一质量为m、带电荷量为+q的粒子(不计重力),以初速度由板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区。当和取某些特定值时,可使时刻入射的粒子经时间恰能垂直打在板上(不考虑粒子反弹)。上述为已知量。
(1) 若,求;
(2) 若,求粒子在磁场中运动时加速度的大小;
(3) 若,为使粒子仍能垂直打在板上,求。
114.(2014·新课标全国卷Ⅱ)半径分别为r和2r的同心圆形导轨固定在同一水平面上,一长为r,质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨的中心O,装置的俯视图如图所示;整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下;在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出)。直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触。设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大小为g,求:(1)通过电阻R的感应电流的方向和大小;(2)外力的功率。
115.(2014·北京卷)导体切割磁感线的运动可以从宏观和微观两个角度来认识。如图所示,固定于水平面的U形导线框处于竖直向下的匀强磁场中,金属直导线MN在与其垂直的水平恒力F的作用下,在导线框上以速度v做匀速运动,速度v与恒力F方向相同,导线MN始终与导线框形成闭合电路,已知导线MN电阻为R,其长度L,恰好等于平行轨道间距,磁场的磁感应强度为B,忽略摩擦阻力和导线框的电阻。
(1)通过公式推导验证:在时间内,F对导线MN所做的功W等于电路获得的电能,也等于导线MN中产生的焦耳热Q。
(2)若导线的质量m=8.0g,长度L=0.1m,感应电流I=1.0A,假设一个原子贡献1个自由电子,计算导线MN中电子沿导线长度方向定向移动的平均速率v(下表中列出了一些你可能用到的数据)。
(3)经典物理学认为,金属的电阻源于定向运动自由电子和金属离子(金属原子失去电子后剩余部分)的碰撞,展开你想象的翅膀,给出一个合理的自由电子运动模型:在此基础上,求出导线MN中金属离子对一个自由电子沿导线长度方向的平均作用力的表达式。
[[[[116.(2014·福建卷·T22)如图,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L、宽度为d、高为h,上下两面是绝缘板,前后两侧面M、N是电阻可忽略的导体板,两导体板与开关S和定值电阻R相连。整个管道置于磁感应强度大小为B,方向沿z轴正方向的匀强磁场中。管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v0沿x轴正向流动,液体所受的摩擦阻力不变。
(1)求开关闭合前,M、N两板间的电势差大小U0;
(2)求开关闭合前后,管道两端压强差的变化Δp;
(3)调整矩形管道的宽和高,但保持其它量和矩形管道的横截面S=dh不变,求电阻R可获得的最大功率Pm及相应的宽高比d/h的值。
117.(2014·安徽卷)如图1所示,匀强磁场的磁感应强度B为0.5T.其方向垂直于倾角为30°的斜面向上。绝缘斜面上固定有∧形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5m,MN连线水平,长为3m。以MN中点O为原点、OP为x轴建立一维坐标系Ox。一根粗细均匀的金属杆CD,长度d为3m、质量m为1kg、电阻R为0.3Ω,在拉力F的作用下,从MN处以恒定的速度v=1m/s,在导轨上沿x轴正向运动(金属杆与导轨接触良好)。g取10m/s2。
(1)求金属杆CD运动过程中产生产生的感应电动势E及运动到处电势差;
(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出F-x关系图象;
(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热。
118.(2014·江苏卷)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:
(1)导体棒与涂层间的动摩擦因数μ;
(2)导体棒匀速运动的速度大小v;
(3)整个运动过程中,电阻产生的焦耳热Q。
119.(2014·天津卷)如图所示,两根足够长的平行金属导轨固定在倾角的斜面上,导轨电阻不计,间距L=0.4m,导轨所在空间被分成区域I和II,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,II中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5T。在区域I中,将质量,电阻的金属条ab放在导轨上,ab刚好不下滑。然后,在区域II中将质量,电阻的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域II的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取,问
(1)cd下滑的过程中,ab中的电流方向;
(2)ab刚要向上滑动时,cd的速度v多大?
(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少?
120.(2014·海南卷)如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成夹角。一质量为m、电荷量为q(q>0)的粒子以初速度v0从y轴上的P点沿y轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T0,磁场的方向变为垂直于纸面向里,大小不变。不计重力。
(1)求粒子从P点出发至第一次到达x轴时所需时间;
(2)若要使粒子能够回到P点,求电场强度的最大值。
121.(2015·全国新课标Ⅱ卷·T 24)如图所示,一质量为m、电荷量为q(q>0)的例子在匀强电场中运动,A、B为其运动轨迹上的两点。已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B点时速度方向与电场方向的夹角为30°。不计重力。求A、B两点间的电势差。
122.(2015·重庆卷·T7)音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.题7图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为,匝数为,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为.
(1)求此时线圈所受安培力的大小和方向。
(2)若此时线圈水平向右运动的速度大小为,求安培力的功率.
123.(2015·全国新课标Ⅰ卷·T24)如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取10m/s2。判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。
124.(2015·浙江卷·T24)小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡。线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为。线圈的下边处于匀强磁场内,磁感应强度,方向垂直线圈平面向里。线圈中通有可在0~2.0A范围内调节的电流I。挂盘放上待测物体后,调节线圈中电流使得天平平衡,测出电流即可测得物体的质量。(重力加速度取)
(1)为使电磁天平的量程达到0.5kg,线圈的匝数至少为多少
(2)进一步探究电磁感应现象,另选匝、形状相同的线圈,总电阻,不接外电流,两臂平衡,如图2所示,保持不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B随时间均匀变大,磁场区域宽度。当挂盘中放质量为0.01kg的物体时,天平平衡,求此时磁感应强度的变化率。
125.(2015·海南卷·T13)如图,两平行金属导轨位于同一水平面上,相距,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速度匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为,重力加速度大小为g,导轨和导体棒的电阻均可忽略。求
(1)电阻R消耗的功率;
(2)水平外力的大小。
126.(2015·安徽卷·T23)在xOy平面内,有沿y轴负方向的匀强电场,场强大小为E(图中未画出),由A点斜射出一质量为m,带电荷量为+q的粒子,B和C是粒子运动轨迹上的两点,如图所示,其中l0为常数。粒子所受重力忽略不计。求:
(1)粒子从A到C过程中电场力对它做的功;
(2)粒子从A到C过程所经历的时间;
(3)粒子经过C点时的速率。
127.(2015·浙江卷·T25)使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等。质量为m,速度为v的离子在回旋加速器内旋转,旋转轨道时半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B。为引出离子束,使用磁屏蔽通道法设计引出器。引出器原理如图所示,一堆圆弧形金属板组成弧形引出通道,通道的圆心位于点(点图中未画出)。引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出。已知OQ长度为L。OQ与OP的夹角为,
(1)求离子的电荷量q并判断其正负;
(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为,求;
(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应。为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小。
128.(2015·上海卷·T32)如图(a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v-t图像如图(b)所示,在15s时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:
(1)金属杆所受拉力的大小为F;
(2)0-15s匀强磁场的磁感应强度大小为;
(3)15-20s内磁感应强度随时间的变化规律。
129.(2015·山东卷·T24)如图所示,直径分别为D和2D的同心圆处于同一竖直面内,O为圆心,GH为大圆的水平直径。两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场。间距为d的两平行金属极板间有一匀强电场,上极板开有一小孔。一质量为m,电量为+q的粒子由小孔下方d/2处静止释放,加速后粒子以竖直向上的速度v射出电场,由点紧靠大圆内侧射入磁场。不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求区磁感应强度的大小;
(3)若Ⅰ区,Ⅱ区磁感应强度的大小分别为2mv/qD,4mv/qD,粒子运动一段时间后再次经过H点,求这段时间粒子运动的路程。
130.(2015·上海卷·T33)如图,在场强大小为E、水平向右的匀强电场中,一轻杆可绕固定转轴O在竖直平面内自由转动。杆的两端分别固定两电荷量均为q的小球A、B;A带正电,B带负电;A、B两球到转轴O的距离分别为2l、l,所受重力大小均为电场力大小的倍,开始时杆与电场夹角为()。将杆从初始位置由静止释放,以O点为重力势能和电势能零点。求:
(1)初始状态的电势能;
(2)杆在平衡位置时与电场间的夹角;
(3)杆在电势能为零处的角速度。
131.(2015·天津卷·T11)如图所示,凸字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g;求
(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的 几倍
(2)磁场上下边界间的距离H
132.(2015·天津卷·T12)现代科学仪器常利用电场、磁场控制带电粒子的运动。在真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场和磁场的宽度均为d。电场强度为E,方向水平向右;磁感应强度为B,方向垂直纸面向里。电场、磁场的边界互相平行且与电场方向垂直,一个质量为m、电荷量为q的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射
(1)求粒子在第2层磁场中运动时速度的大小与轨迹半径
(2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为,试求
(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之
133.(2015·北京卷·T24)真空中放置的平行金属板可以用作光电转换装置,如图所示,光照前两板都不带电,以光照射A板,则板中的电子可能吸收光的能量而逸出。假设所有逸出的电子都垂直于A板向B板运动,忽略电子之间的相互作用,保持光照条件不变,a和b为接线柱。已知单位时间内从A板逸出的电子数为N,电子逸出时的最大动能为,元电荷为e。
(1)求A板和B板之间的最大电势差,以及将a、b短接时回路中的电流Im。
(2)图示装置可看作直流电源,求其电动势E和内阻r.
(3)在a和b之间连接一个外电阻时,该电阻两端的电压为U,外电阻上消耗的电功率设为P;单位时间内到达B板的电子,在从A板运动到B板的过程中损失的动能之和设为,请推导证明:.
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题中做必要的说明)
134.(2015·江苏卷·T13)做磁共振检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流。某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0cm,线圈导线的横截面积A=0.80cm2,电阻率,如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3s内从1.5T均匀地减小为零,求(计算结果保留一位有效数字)
(1)该圈肌肉组织的电阻R;
(2)该圈肌肉组织中的感应电动势E;
(3)0.3s内该圈肌肉组织中产生的热量Q。
135.(2015·广东卷·T35)如图17(a)所示,平行长直金属导轨水平放置,间距L=0.4m,导轨右端接有阻值R=1Ω的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L,从0时刻开始,磁感应强度B的大小随时间t变化,规律如图17(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s做直线运动,求:
(1)棒进入磁场前,回路中的电动势E;
(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流i与时间t的关系式。
136.(2015·福建卷·T22)如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B。一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动。A、C两点间距离为h,重力加速度为g。
(1)求小滑块运动到C点时的速度大小vc;
(2)求小滑块从A点运动到C点过程中克服摩擦力做的功Wf;
(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。已知小滑块在D点时的速度大小为vD,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小vp.
137.(2015·重庆卷·T9)题9图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中和是间距为的两平行极板,其上分别有正对的两个小孔和,,P为靶点,(为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为.质量为、带电量为的正离子从点由静止开始加速,经进入磁场区域.当离子打到极板上区域(含点)或外壳上时将会被吸收.两虚线之间的区域无电场和磁场存在,离子可匀速穿过.忽略相对论效应和离子所受的重力.求:
(1)离子经过电场仅加速一次后能打到P点所需的磁感应强度大小;
(2)能使离子打到P点的磁感应强度的所有可能值;
(3)打到P点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
138.(2015·四川卷·T11)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ。均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。空间有方向竖直的匀强磁场(图中未画出)。两金属棒与导轨保持良好接触。不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g。
(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;
(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电荷量;
(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止。求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离。
139.(2015·江苏卷·T15)一台质谱仪的工作原理如图所示,电荷量均为+q、质量不同的离子飘入电压为U0的加速电场,其初速度几乎为零,这些离子经过加速后通过狭缝O沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场,最后打在底片上,已知放置底片区域已知放置底片的区域MN =L,且OM =L。某次测量发现MN中左侧2/3区域MQ损坏,检测不到离子,但右侧1/3区域QN仍能正常检测到离子. 在适当调节加速电压后,原本打在MQ的离子即可在QN检测到.
(1)求原本打在MN中点P的离子质量m;
(2)为使原本打在P的离子能打在QN区域,求加速电压U的调节范围;
(3)为了在QN区域将原本打在MQ区域的所有离子检测完整,求需要调节U的最少次数。(取;)
(111140.(2013·广东卷·T36)如图19(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴承转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件。流过电流表的电流I与圆盘角速度ω的关系如图19(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点。ω>0代表圆盘逆时针转动。已知:R=3.0Ω,B=1.0T,r=0.2m。忽略圆盘、电流表和导线的电阻。
(1)根据图19(b)写出ab、bc段对应I与ω的关系式;
(2)求出图19(b)中b、c两点对应的P两端的电压Ub、Uc;
(3)分别求出ab、bc段流过P的电流IP与其两端电压UP的关系式.
abIωωbcωI
141.(2013·福建卷·T22)如图甲所示,空间存在一范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。让质量为m,电荷量为q(q>0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到磁场中。不计重力和粒子间的影响。
(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;
(2)已知一粒子的初速度大小为v(v>v1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个?并求出对应的sinθ值;
(3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴正向发射。研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关。求该粒子运动过程中的最大速度值vm。
142.(2013·安徽卷·T23)如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y正方向;在第Ⅳ象限的正三角形abc区域内有匀强电场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行。一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力。求:
(1)电场强度E的大小;
(2)粒子到达a点时速度的大小和方向;
(3)abc区域内磁场的磁感应强度B的最小值。
143.(2016·北京卷)如图所示,质量为m、电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动。不计带电粒子所受重力。
(1)求粒子做匀速圆周运动的半径R和周期T;
(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小。
144.(2016·北京卷)如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出。已知电子质量为m,电荷量为e,加速电场电压为。偏转电场可看作匀强电场,极板间电压为U,极板长度为L,板间距为d。
(1)忽略电子所受重力,求电子射入偏转电场时的初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy;
(2)分析物理量的数量级,是解决物理问题的常用方法。在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。已知,,,,。
(3)极板间既有静电场也有重力场。电势反映了静电场各点的能的性质,请写出电势的定义式。类比电势的定义方法,在重力场中建立“重力势”的概念,并简要说明电势和“重力势”的共同特点。
145.(2016·海南卷)如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L。在△OCA区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0。不计重力。
(1)求磁场的磁感应强度的大小;
(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;
(3)若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为,求粒子此次入射速度的大小。
146.(2016·江苏卷)回旋加速器的工作原理如题15-1图所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q,加在狭缝间的交变电压如题15-2图所示,电压值的大小为U0.周期T=.一束该种粒子在t=0~时间内从A处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:
(1)出射粒子的动能;
(2)粒子从飘入狭缝至动能达到所需的总时间;
(3)要使飘入狭缝的粒子中有超过99%能射出,d应满足的条件.
147.(2016·上海卷)如图,一关于y轴对称的导体轨道位于水平面内,磁感应强度为B的匀强磁场与平面垂直。一足够长,质量为m的直导体棒沿x轴方向置于轨道上,在外力F作用下从原点由静止开始沿y轴正方向做加速度为a的匀加速直线运动,运动时棒与x轴始终平行。棒单位长度的电阻为ρ,与电阻不计的轨道接触良好,运动中产生的热功率随棒位置的变化规律为P=ky(SI)。求:
(1)导体轨道的轨道方程y=f(x);
(2)棒在运动过程中受到的安培力Fm随y的变化关系;
(3)棒从y=0运动到y=L过程中外力F的功。
,
148.(2016·天津卷)如图所示,空间中存在着水平向右的匀强电场,电场强度大小为,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T。有一带正电的小球,质量m=1×10–6 kg,电荷量q=2×10–6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2。求:
(1)小球做匀速直线运动的速度v的大小和方向;
(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t。
149.(2016·天津卷)电磁缓速器是应用于车辆上以提高运行安全性的辅助制动装置,其工作原理是利用电磁阻尼作用减缓车辆的速度。电磁阻尼作用可以借助如下模型讨论:如图所示,将形状相同的两根平行且足够长的铝条固定在光滑斜面上,斜面与水平方向夹角为θ。一质量为m的条形磁铁滑入两铝条间,恰好匀速穿过,穿过时磁铁两端面与两铝条的间距始终保持恒定,其引起电磁感应的效果与磁铁不动、铝条相对磁铁运动相同。磁铁端面是边长为d的正方形,由于磁铁距离铝条很近,磁铁端面正对两铝条区域的磁场均可视为匀强磁场,磁感应强度为B,铝条的高度大于d,电阻率为ρ。为研究问题方便,铝条中只考虑与磁铁正对部分的电阻和磁场,其他部分电阻和磁场可忽略不计,假设磁铁进入铝条间以后,减少的机械能完全转化为铝条的内能,重力加速度为g。
(1)求铝条中与磁铁正对部分的电流I;
(2)若两铝条的宽度均为b,推导磁铁匀速穿过铝条间时速度v的表达式;
(3)在其他条件不变的情况下,仅将两铝条更换为宽度b'>b的铝条,磁铁仍以速度v进入铝条间,试简要分析说明磁铁在铝条间运动时的加速度和速度如何变化。
150.(2016·四川卷)如图所示,图面内有竖直线DD',过DD'且垂直于图面的平面将空间分成I、II两区域。区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B(图中未画出);区域II有固定在水平面上高、倾角的光滑绝缘斜面,斜面顶端与直线DD'距离,区域II可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD'上,距地面高。零时刻,质量为m、带电量为q的小球P在K点具有大小、方向与水平面夹角的速度。在区域I内做半径的匀速圆周运动,经C点水平进入区域II。某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇。小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响。l已知,g为重力加速度。
(1)求匀强磁场的磁感应强度B的大小;
(2)若小球A、P在斜面底端相遇,求释放小球A的时刻tA;
(3)若小球A、P在时刻(β为常数)相遇于斜面某处,求此情况下区域II的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向。
151.(2016·全国新课标Ⅱ卷)如图,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上。t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动,t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g。求:
(1)金属杆在磁场中运动时产生的电动势的大小;
(2)电阻的阻值。
152.(2016·浙江卷)小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53°,导轨上端串接一个R=0.05 Ω的电阻。在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T。质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连。CD棒的初始位置与磁场区域的下边界相距s=0.24 m。一位健身者用恒力F=80 N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直。当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g=10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)。求
(1)CD棒进入磁场时速度v的大小;
(2)CD棒进入磁场时所受的安培力FA的大小;
(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q。
153.(2016·浙江卷·T25)为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”。在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转。
扇形聚焦磁场分布的简化图如图所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布。峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场。质量为m,电荷量为q的正离子,以不变的速率v旋转,其闭合平衡轨道如图中虚线所示。
(1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针;
(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T;
(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B' ,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B'和B的关系。已知:sin(α±β )=sin αcos β±cos αsin β,cosα=1–2
154.(2016·全国新课标Ⅲ卷)如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
155.(2017·新课标Ⅲ卷·T24)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)
(1)粒子运动的时间;
(2)粒子与O点间的距离。
°2156.(2017·新课标Ⅱ卷)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场。自该区域上方的A点将质量为m、电荷量分别为q和–q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍。不计空气阻力,重力加速度大小为g。求
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小。
157.(2017·江苏卷)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.
(1)求甲种离子打在底片上的位置到N点的最小距离x;
(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;
(3)若考虑加速电压有波动,在()到()之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.
158.(2017·天津卷)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现象存在沿y轴负方向的匀强电场,如图所示。一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒子重力,问:
(1)粒子到达O点时速度的大小和方向;
(2)电场强度和磁感应强度的大小之比。
159.(2017·天津卷)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问:
(1)磁场的方向;
(2)MN刚开始运动时加速度a的大小;
(3)MN离开导轨后电容器上剩余的电荷量Q是多少。
160.(2015·北京卷·T22)如图所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4m一端连接R=1的电阻。导线所在空间存在竖直向下的匀强磁场,磁感应强度B=1T。导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好,导轨和导体棒的电阻均可忽略不计。在平行于导轨的拉力作用下,导体棒沿导轨向右匀速运动,速度v=5m/s。求:
(1)感应电动势E和感应电流I;
(2)在0.1s时间内,拉力的冲量的大小;
(3)若将MN换为电阻r=1的导体棒,其他条件不变,求导体棒两端的电压U。
161.(2010·海南卷·T15)右图中左边有一对平行金属板,两板相距为d.电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。一电荷量为q的正离子沿平行于全属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区城边界上的G点射出.已知弧所对应的圆心角为θ,不计重力.求
(1)离子速度的大小;
(2)离子的质量。
162.(2010·重庆卷·T25)某兴趣小组用如题25图所示的装置进行实验研究.他们在水平桌面上固定一内径为的椭圆形玻璃杯,杯口上放置一直径为1.5d,质量为m的匀质薄圆板,板内放一质量为2m的小物块.板中心、物块均在杯的轴线上.物块与板间动摩擦因数为µ,不计板与杯口之间的摩擦力,重力加速度为g,不考虑板翻转。
(1)对板施加指向圆心的水平外力F,设物块与板间最大静摩擦力为fmax,若物块能在板上滑动,求F应满足的条件。
(2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I,
①I应满足什么条件才能使物块从板上掉下?
②物块从开始运动到掉下时的位移s为多少?
③根据s与I的关系式说明要使s更小,冲量应如何改变.
163.(2010·四川卷·T25)如图所示,空间有场强的竖直向下的匀强电场,长的不可伸长的轻绳一端固定于O点,另一端系一质量的不带电小球A,拉起小球至绳水平后,无初速释放。另一电荷量、质量与相同的小球,以速度水平抛出,经时间与小球C与D点下方一足够大的平板相遇。不计空气阻力,小球均可视为质点,取。
求碰撞前瞬间小球的速度。
若小球经过路到达平板,此时速度恰好为O,求所加的恒力。
若施加恒力后,保持平板垂直于纸面且与水平面的夹角不变,在点下方任意改变平板位置,小球均能与平板正碰,求出所有满足条件的恒力。
164.(2010·新课标Ⅰ卷·T25.)如图所示,在0≤x≤a、0≤y≤范围内有垂直手xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的
(1)速度的大小:
(2)速度方向与y轴正方向夹角的正弦。
165.(2010·新课标Ⅰ卷·T35(2))如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙。重物质量为木板质量的2倍,重物与木板间的动摩擦因数为µ。使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短。求木板从第一次与墙碰撞到再次碰撞所经历的时间。设木板足够长,重物始终在木板上。重力加速度为g。
166.(2010·福建卷·T20)如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场。一束同位素离子流从狭缝S1射入速度选择器,能够沿直线通过速度选择器并从狭缝S2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E的偏转电场,最后打在照相底片D上。已知同位素离子的电荷量为q(q>0),速度选择器内部存在着相互垂直的场强大小为E0的匀强电场和磁感应强度大小为B0的匀强磁场,照相底片D与狭缝S1、S2的连线平行且距离为L,忽略重力的影响。
(1)求从狭缝S2射出的离子速度v0的大小;
(2)若打在照相底片上的离子在偏转电场中沿速度v0方向飞行的距离为x,求出x与离子质量m之间的关系式(用E0、B0、E、q、m、L表示)。
167.(2010·山东卷·T25)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为m、带电量+q、重力不计的带电粒子,以初速度v1垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求
(1)粒子第一次经过电场的过程中电场力所做的功W1。
(2)粒子第n次经过电场时电场强度的大小En。
(3)粒子第n次经过电场所用的时间tn。
(4)假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值)。
168.(2010·福建卷·T21)如图所示,两条平行的光滑金属导轨固定在倾角为的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场。现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向选滑动,此时b棒已滑离导轨。当a棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动。已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计。求
(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度IR之比;
(2)a棒质量ma;
(3)a棒在磁场中沿导轨向上运动时所受的拉力F。
(1)(2)(3)169.(2010·浙江卷·T23)如图所示,一矩形轻质柔软反射膜可绕过O点垂直纸面的水平轴转动,其在纸面上的长度OA为L1,垂直纸面的宽度为L2。在膜的下端(图中A处)挂有一平行于转轴,质量为m,长为L2的导体棒使膜绷成平面。在膜下方水平放置一足够大的太阳能光电池板,能接收到经反射膜反射到光电池板上的所有光能,并将光能转化成电能。光电池板可等效为一个电池,输出电压恒定为U;输出电流正比于光电池板接收到的光能(设垂直于入射光单位面积上的光功率保持恒定)。导体棒处在方向竖直向上的匀强磁场B中,并与光电池构成回路,流经导体棒的电流垂直纸面向外(注:光电池与导体棒直接相连,连接导线未画出)。
(1)若有一束平行光水平入射,当反射膜与竖直方向成θ=60°时,导体棒处于受力平衡状态,求此时电流强度的大小和光电池的输出功率。
(2)当θ变成45°时,通过调整电路使导体棒保持平衡,光电池除维持导体棒力学平衡外,不能输出多少额外电功率?
170.(2010·安徽卷·T24)如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。一不带电的绝缘小球甲,以速度υ0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/s2。(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;
(2)在满足(1)的条件下。求的甲的速度υ0;
(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。
171.(2010·重庆卷·T24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞离水平距离d后落地,如题24图所示。已知握绳的手离地面高度为d,手与球之间的绳长为 ,重力加速度为g.忽略手的运动半径和空气阻力。
(1)求绳断时球的速度大小v1,和球落地时的速度大小v2.
(2)问绳能承受的最大拉力多大?
(3)改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
2010-2019年高考物理真题分专题训练 专题12 磁场 (学生版): 这是一份2010-2019年高考物理真题分专题训练 专题12 磁场 (学生版),共33页。
2010-2019年高考物理真题分专题训练 专题10 恒定电流 (学生版): 这是一份2010-2019年高考物理真题分专题训练 专题10 恒定电流 (学生版),共10页。试卷主要包含了如图所示的电路中,电阻R=2Ω等内容,欢迎下载使用。
2010-2019年高考物理真题分专题训练 专题08 动量 (学生版): 这是一份2010-2019年高考物理真题分专题训练 专题08 动量 (学生版),共16页。试卷主要包含了高空坠物极易对行人造成伤害,将质量为1,高空作业须系安全带等内容,欢迎下载使用。