终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题07 复数——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题07 复数(原卷版).docx
    • 解析
      专题07 复数(解析版).docx
    专题07 复数(原卷版)第1页
    专题07 复数(原卷版)第2页
    专题07 复数(原卷版)第3页
    专题07 复数(解析版)第1页
    专题07 复数(解析版)第2页
    专题07 复数(解析版)第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题07 复数——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册)

    展开

    这是一份专题07 复数——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册),文件包含专题07复数解析版docx、专题07复数原卷版docx等2份学案配套教学资源,其中学案共30页, 欢迎下载使用。
    专题7 复数            (一)复数的概念1.复数的定义:形如abi(abR)的数叫做复数,其中i叫做虚数单位,满足i2=-1.全体复数构成的集合叫做复数集.2.复数的代数表示:复数通常用字母z表示,即zabi(abR),这一表示形式叫做复数的代数形式,ab分别叫做复数z的实部与虚部.3.复数相等的充要条件abcd都是实数,那么abicdiacbd.4.复数zabi(abR)z0的充要条件是a0b0a0z为纯虚数的必要不充分条件.5.复数的分类(1)复数zabi(abR)z为实数b0z为虚数b≠0z为纯虚数.(2)集合表示:(二)复数的四则运算1.复数的加、减、乘、除的运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R)(1)z1±z2=(a±c)+(b±d)i(2)z1·z2=(ac-bd)+(ad+bc)i(3) i (z2≠0).2. 复数的加、减法几何意义及运算律z1z1z3C,设分别与复数z1abiz2cdi(abcdR)相对应,且共线 加法减法几何意义复数的和z1z2与向量的坐标对应复数的差z1z2与向量的坐标对应运算律交换律z1z2z2z1 结合律(z1z2)z3z1(z2z3)3.复数乘法的运算律对任意复数z1z2z3C,有交换律z1·z2z2·z1结合律(z1·z2z3z1·(z2·z3)分配律z1(z2z3)z1z2z1z34.共轭复数:一般地当两个复数的实部相等虚部互为相反数时这两个复数叫做互为共轭复数复数z的共轭复数记作5.共轭与模是复数的重要性质,运算性质有:(1);(2);(3);(4)(5);(6).6in(nN*)的性质计算复数的乘积要用到虚数的单位i的乘方,in有如下性质:i1ii2=-1i3i·i2=-ii4i3·i=-i·ii从而对于任何nN*,都有i4n1i4n·i(i4)n·ii同理可证i4n2=-1i4n3=-ii4n41.这就是说,如果nN*,那么有i4n1ii4n2=-1i4n3=-ii4n41.复数的几何意义1.复平面的定义建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.2.复数的几何意义(1)每一个复数都由它的实部和虚部唯一确定,当把实部和虚部作为一个有序数对时,就和点的坐标一样,从而可以用点表示复数,因此复数与复平面内的点是一一对应关系.(2)若复数zabi(abR),则其对应的点的坐标是 (ab),不是(abi).(3)复数与复平面内以原点为始点的向量也可以建立一一对应关系.如图,在复平面内,复数zabi(abR)可以用点Z(ab)或向量 表示.复数zabi(abR)与点Z(ab)和向量的一一对应关系如下:3.复数的模复数zabi(abR)对应的向量为,则的模叫做复数z的模,记作|z||z|  b0时,z模就是实数a的绝对值.4.复数模的几何意义复数模的几何意义就是复数zabi所对应的点Z(ab)到原点(0,0)的距离.由向量的几何意义知,|z1z2|表示在复平面内复数z1z2对应的两点之间的距离.复数的三角形式及其运算1.复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数zabi都可以表示成r(cos θisin θ)的形式,其中,r是复数zθ是以x轴的非负半轴为始边,向量所在射线(射线OZ)为终边的角,叫做复数zabi的辐角,我们规定在0≤θ范围内的辐角θ的值为辐角的主值,通常记作arg zr(cos θisin θ)叫做复数zabi的三角表示式,简称三角形式.abi叫做复数的代数表示式,简称代数形式.2.复数三角形式的乘、除运算若复数z1r1(cos θ1isin θ1)z2r2(cos θ2isin θ2),且z1z2,则(1)z1z2r1(cos θ1isin θ1r2(cos θ2isin θ2)=r1r2[cos(θ1θ2)isin(θ1θ2)](2) [cos(θ1θ2)isin(θ1θ2)]即:两个复数相乘,积的模等于各复数的模的积积的辐角等于各复数的辐角的两个复数相除,商的模等于被除数的模除以除数模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.题型  复数的概念【典例1】2023·高一课时练习)已知复数)的实部与虚部互为相反数,则的取值不可能为(    A B C D【总结提升】(1)复数的代数形式:zabi,只有当abR时,a才是z的实部,b才是z的虚部,且注意虚部不是bi,而是b.(2)不要将复数与虚数的概念混淆,实数也是复数,实数和虚数是复数的两大构成部分.学习本章必须准确理解复数的概念.(3)虚数单位i的性质i2=-1.i与实数之间可以运算,亦适合加、减、乘的运算律.由于i2<0与实数集中a2≥0(aR)矛盾,所以实数集中很多结论在复数集中不再成立.例如:复数集中不全是实数的两数不能比较大小.题型二  复数的分类【典例2【多选题】2022·全国·高一假期作业)下列说法中正确的有(    A.若,则是纯虚数B.若是纯虚数,则实数C.若,则为实数D.若,且,则【总结提升】1.判断一个含有参数的复数在什么情况下是实数、虚数、纯虚数,首先要保证参数值使虚数表达式有意义,其次要注意复数代数形式的条件,另外对参数值的取舍,是取还是,非常关键,解答后进行验算是很必要的.2.形如bi的数不一定是纯虚数,只有限定条件bR b≠0时,形如bi的数才是纯虚数.题型三  复数的相等【典例3】2023·高一课时练习)若共轭复数xy满足,则xy共有______组解.【总结提升】复数相等的充要条件是“化复为实”的主要依据,多用来求解参数的值.步骤是:分别分离出两个复数的实部和虚部,利用实部与虚部分别相等列方程组求解.题型四  复数的几何意义【典例42023·全国·高一专题练习)已知复平面内的向量对应的复数分别是-2i32i,则________【典例52022·江苏徐州·高一校考阶段练习)已知复数满足,则的最大值为______.【典例62022·江苏苏州·高一统考期中)已知复数z满足为虚数单位.(1)求复数z(2)若复数z在复平面内对应的点为ABO为坐标原点,求OAB的面积.【总结提升】1.复数的几何意义包含两种:(1)复数与复平面内点的对应关系:每一个复数和复平面内的一个点对应,复数的实部、虚部分别是对应点的横坐标、纵坐标.(2)复数与复平面内向量的对应关系:当向量的起点在原点时,该向量可由终点唯一确定,从而可与该终点对应的复数建立一一对应关系,借助平面向量的有关知识,可以更好的理解复数的相关知识.2.有关复数在复平面内的对应点位置(在实轴上、虚轴上、某个象限内、某条已知直线上等)的题目,先找出复数的实部、虚部,再按点所在的位置列方程或不等式()求解.题型  复数的四则运算【典例72022·江苏·高一开学考试)已知复数满足,则复数___________.【典例82022·江苏盐城·高一盐城市田家中学校考期中)若复数,复数(1),求实数的值;(2),求【典例92022·江苏·金湖中学校联考阶段练习)设为虚数单位,,复数.(1)是实数,求的值;(2)是纯虚数,求.【总结提升】1.复数四则运算的解题策略(1)复数的加法、减法、乘法运算可以类比多项式的运算.(2)复数的除法运算是分子、分母同乘以分母的共轭复数,即分母实数化.(3)在含有z,z,|z|中至少两个的复数方程中,可设z=a+bi,a,b∈R,变换方程,利用两复数相等的充要条件得出关于a,b的方程组,求出a,b,从而得出复数z.2注意应用: (1i)22i(1i)2=-2i=-ii=-i.题型六  复数模的计算【典例10】【多选题】2022·江苏无锡·高一江苏省天一中学校考期中)已知复数的共轭复数,则下列结论正确的是(    A.若,则 B.若,则C D.若,则【典例112022·江苏盐城·高一江苏省响水中学校考开学考试)已知复数满足等式是虚数单位,则的模______题型七  共轭复数【典例12】2023·贵州贵阳·统考模拟预测)已知是虚数单位,复数的共轭复数的虚部为(    A B C4 D【典例13】【多选题】2022·高一单元测试)设是复数,则下列说法中正确的是(    A.若,则 B.若,则C.若|z1||z2|,则 D.若|z1||z2|,则【总结提升】1.由比较复杂的复数运算给出的复数,求其共轭复数,可先按复数的四则运算法则进行运算,将复数写成代数形式,再写出其共轭复数.2.注意共轭复数的简单性质的运用.题型八  复数的三角形式及运算【典例14】2023·全国·高一专题练习)把复数i为虚数单位)改写成三角形式为______【典例152023·高一课时练习)计算:______【典例162023·全国·高一专题练习)回答下面两题(1)求证:(2)写出下列复数z的倒数的模与辐角【总结提升】1.复数的代数形式化为三角形式的步骤(1)先求复数的模.(2)决定辐角所在的象限.(3)根据象限求出辐角.(4)求出复数的三角形式.2.提醒:(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数(2)复数0的辐角是任意的.(3)0≤θ范围内的辐角θ的值为辐角的主值,通常记作arg z,且0≤arg z2π.(4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等.(5)一般在复数三角形式中的辐角,常取它的主值,这使表达式简便,又便于运算,但三角形式辐角不一定取主值. 3.三角形式乘、除法:(1)乘法法则:模相乘,辐角相加.(2)除法法则:模相除,辐角相减.(3)复数的n次,等于模的n次,辐角为n一、单选题1.(2022·江苏盐城·高一盐城市田家中学校考期中)复数的实部是(    A2 B C2 D02.(2021·江苏无锡·高一统考期末)复数的共轭复数是(    A.-2i B.-2i C2i D2i3.(2022·江苏无锡·高一统考期末)复数满足,则    A B C1 D24.2022·江苏盐城·高一统考期末)已知复数z满足z=1+,则在复平面内对应的点在(    A.第一象限 B.第二象限C.第三象限 D.第四象限5.2022·全国·统考高考真题)若,则    A B C D6.2022·全国·统考高考真题)已知,且,其中ab为实数,则(    A B C D二、多选题7.(2022·江苏镇江·高一扬中市第二高级中学校考期末)已知复数(其中为虚数单位,)则下列说法正确的有(    A.若 B.若,则C.若,则 D.若,则三、填空题8.(2022·江苏苏州·高一统考期末)设是虚数单位,复数,请写出一个满足是纯虚数的复数___________.9.(2022·江苏宿迁·高一泗阳县实验高级中学校考阶段练习)已知,复平面内表示复数的点所对应的数为纯虚数,则_____________10.(2022·江苏南通·高一统考期末)设为虚数单位,复数,则的最大值为__________11.(2023·高一单元测试)复数在复平面上对应的向量分别为,已知,且,则复数______.、解答题12.(2022·江苏扬州·高一统考期末)已知复数(1)z在复平面内对应的点在第四象限,求m的取值范围;(2)z是纯虚数,求m的值.13.(2022·江苏·高一马坝高中校考期中)(1)已知,求实数的值.2)设,若为实数,求的值.14.(2022·江苏宿迁·高一统考期末)已知复数满足(1)(2)若复数的虚部为2,且在复平面内对应的点位于第四象限,求复数实部a的取值范围.15.(2023·全国·高一专题练习)求实数分别取何值时,复数对应的点满足下列条件:(1)在复平面内的轴上方;(2)在实轴负半轴上.16.(2023·高一课时练习)计算下列各式,并给出几何解释.(1)(2)

    相关学案

    期末模拟试卷01——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册):

    这是一份期末模拟试卷01——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册),文件包含期末模拟试卷01解析版docx、期末模拟试卷01原卷版docx等2份学案配套教学资源,其中学案共24页, 欢迎下载使用。

    专题14 概率——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册):

    这是一份专题14 概率——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册),文件包含专题14概率解析版docx、专题14概率原卷版docx等2份学案配套教学资源,其中学案共35页, 欢迎下载使用。

    专题13 统计——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册):

    这是一份专题13 统计——2022-2023学年高一数学下学期期末知识点精讲+训练学案+期末模拟卷(苏教版2019必修第二册),文件包含专题13统计解析版docx、专题13统计原卷版docx等2份学案配套教学资源,其中学案共43页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map