- 【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题05 一元二次方程的根与系数关系(四大类型) 学案 1 次下载
- 【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题06 一元二次方程的应用大全(5大类型) 学案 1 次下载
- 【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题08 平行四边形的性质(3大类型) 学案 0 次下载
- 【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题09 三角形中位线题型方法归纳(5大类型) 学案 0 次下载
- 【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题10 正方形中常考四大模型 学案 1 次下载
【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题07 多边形的边数和不规则图形中的角度
展开 专题07 多边形的边数和不规则图形中的角度
真题演练
1.(达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A.90°﹣α B.90°+α C. D.360°﹣α
【答案】C
【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
∵PB和PC分别为∠ABC、∠BCD的平分线,
∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
故选:C.
2.(凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )
A.7 B.7或8 C.8或9 D.7或8或9
【答案】D
【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,
解得:n=8.
则原多边形的边数为7或8或9.
故选:D.
3.(广陵区校级二模)如图,已知△ABC中,∠B=50°,若沿图中虚线剪去∠B,则∠1+∠2等于( )
A.130° B.230° C.270° D.310°
【答案】B
【解答】解:
∠BDE+∠BED=180°﹣∠B,
=180°﹣50°,
=130°,
∠1+∠2=360°﹣(∠BDE+∠BED),
=360°﹣130°,
=230°.
故选:B.
4.(2021春•泉州期末)如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于( )
A.360° B.290° C.270° D.250°
【答案】B
【解答】解:∵∠A=110°,
∴∠A的外角为180°﹣110°=70°,
∴∠1+∠2+∠3+∠4=360°﹣70°=290°,
故选:B.
5.(2020秋•浦北县校级月考)如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=( )
A.360° B.450° C.540° D.720°
【答案】C
【解答】解:如图,
在四边形ACEH中,∠A+∠C+∠E+∠1=360°,
在四边形BDFP中,∠B+∠D+∠F+∠2=360°,
∵180°﹣∠1+180°﹣∠2+∠G=180°,
∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.
故选:C.
6.(2019秋•猇亭区校级期中)如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=( )
A.10° B.15° C.30° D.40°
【答案】B
【解答】解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,
∴∠DAB+∠ABC=150°.
又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,
∴∠PAB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,
∴∠P=180°﹣(∠PAB+∠ABP)=15°.
故选:B.
7.(武汉模拟)如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B= 度.
【答案】95
【解答】解:∵MF∥AD,FN∥DC,
∴∠BMF=∠A=100°,∠BNF=∠C=70°,
∵△BMN沿MN翻折得△FMN,
∴∠BMN=∠BMF=×100°=50°,
∠BNM=∠BNF=×70°=35°,
在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.
故答案为:95.
8.(2019春•江阴市期中)如图,将△ABC纸片沿DE折叠,使点A落在四边形BCED外点A1的位置,若∠1+∠2=240°,则∠A= °.
【答案】30
【解答】解:∵∠1+∠2=240°,
∴∠ADE+∠A1DE+∠AED+∠A1ED=180°+360°﹣240°=300°,
由折叠的性质可得∠ADE+∠AED=150°,
∴∠A=30°.
故答案为:30.
9.(2021秋•阆中市校级期中)如图,∠A+∠B+∠C+∠D+∠E+∠F= .
【答案】360°
【解答】解:如图所示,
∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,
∴∠1+∠2+∠3=∠A+∠B+∠C+∠D+∠E+∠F,
又∵∠1、∠2、∠3是三角形的三个不同的外角,
∴∠1+∠2+∠3=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为:360°.
10.(2022春•鼓楼区校级期末)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为 .
【答案】15,16,17
【解答】解:设新多边形的边数是n,则(n﹣2)•180°=2520°,
解得n=16,
∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,
∴原多边形的边数是15,16,17.
故答案为:15,16,17.
11.(2020春•宽城区期末)一个多边形的内角和是外角和的5倍,求这个多边形的边数.
【解答】解:设多边形的边数为n,
由题意得,(n﹣2)•180°=5×360°,
解得n=12.
故这个多边形的边数是12.
12.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.
【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,
∴∠A+∠ADE=180°,∠B+∠DEB=180°,
则∠A+∠B+∠C+∠ADC
=∠A+∠B+∠C+∠EDC+∠ADE
=∠A+∠B+∠DEB+∠ADE
=360°.
13.(2022春•宝应县校级月考)小马虎同学在计算某个多边形的内角和时得到1840°,老师说他算错了,于是小马虎认真地检查了一遍
(1)若他检查发现其中一个内角多算了一次,求这个多边形的边数是多少?
(2)若他检查发现漏算了一个内角,求漏算的那个内角是多少度?这个多边形是几边形?
【解答】解:(1)设这个多边形的边数是n,重复计算的内角的度数是x,
则(n﹣2)•180°=1840°﹣x,
n=12…40°.
故这个多边形的边数是12.
(2)设这个多边形的边数是n,没有计算在内的内角的度数是x,
则(n﹣2)•180°=1840°+x,
n=12…40°.
180°﹣40°=140°,
故漏算的那个内角是140度,这个多边形是十三边形.
14.(2021秋•道里区期末)已知四边形ABCD,AB∥CD,∠A=∠C.
(1)如图1,求证:AD∥BC;
(2)如图2,点E是BA延长线上的一点,连接CE,∠ABC的平分线与∠ECD的平分线相交于点P.求证:∠BPC=90°﹣∠BCE;
(3)如图3,在(2)的条件下,CE与AD,BP分别相交于点F,G.CQ平分∠BCP,∠AFE=∠BPC,∠D=4∠DCP.求∠GCQ的度数.
【解答】解:(1)∵AB∥CD,
∴∠B+∠C=180°,
∵∠A=∠C,
∴∠B+∠A=180°,
∴AD∥BC;
(2)∵BP平分∠ABC,CP平分∠ECD,
∴∠ABC=2∠PBC,∠ECD=2∠ECP,
∵∠ABC+∠BCD=180°,
∴2∠PBC+∠BCE+2∠ECP=180°,
即:∠PBC+∠BCE+∠ECP=90°,
∵∠BPC+∠PBC+∠BCE+∠ECP=180°,
∴∠BPC+∠BCE=90°,
∴∠BPC=90°﹣∠BCE;
(3)∵∠AFE=∠BPC,∠BPC=90°﹣∠BCE;
∴∠AFE=90°﹣∠BCE,
∵AD∥BC,
∴∠BCE=∠AFE=90°﹣∠BCE;
解得∠BCE=60°,
∴∠AFC=180°﹣∠BCE=120°,∠BPC=60°,
∵∠AFC=∠D+∠DCE,∠D=4∠DCP,
∴4∠DCP+∠DCE=120°,
∵∠DCE=2∠DCP,
∴6∠DCP=120°,
解得∠DCP=∠ECP=20°,
∴∠ABC=∠D=80°,
∴∠PBC=40°,
∵∠PBC+∠P+∠BCP=180°,
∴∠BCP=180°﹣40°﹣60°=80°,
∵CQ平分∠BCP,
∴∠BCQ=40°,
∴∠GCQ=∠BCE﹣∠BCQ=60°﹣40°=20°.
15.(2020•黄州区校级自主招生)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.
(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;
(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)
【解答】解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,
∴∠A+∠B+∠C+∠D+∠E=180°;
(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°;
(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,
所以当截去5个角时增加了180×5度,
则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.
16.(2021春•淅川县期末)将纸片△ABC沿DE折叠使点A落在点A'处
【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是 ∠1=2∠A ;
【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.
【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为 28° .
【解答】解:(1)如图①,∠1=2∠A.
理由如下:由折叠知识可得:∠EA′D=∠A;
∵∠1=∠A+∠EA′D,
∴∠1=2∠A.
(2)如图②,2∠A=∠1+∠2.
理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,
∠A+∠A′+∠A′DA+∠A′EA=360°,
∴∠A′+∠A=∠1+∠2,
由折叠知识可得:∠A=∠A′,
∴2∠A=∠1+∠2.
(3)如图③,
∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,
∴∠1=∠A+∠A′+∠2=2∠A+∠2,
∴2∠A=∠1﹣∠2=56°,
解得∠A=28°.
故答案为:∠1=2∠A;28°.
17.(天台县期末)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.
①若∠A=50°,则∠O= 115° ,∠P= 65° ;
②若∠A=α,则∠O= 90°+α ,∠P= 90°﹣α .(用含α的式子表示)
(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P与∠A,∠D的数量关系,并说明理由;
(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系 ∠P=360°﹣(∠A+∠B+∠E+∠F) .
【解答】解:(1)①解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣50°)=115°;
∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣50°)]=65°;
故答案为:115°;65°.
②解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣α)=90°+α;
∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣α)]=90°﹣α;
故答案为:90°+α;90°﹣α,
(2)解:∠P=180°﹣(∠A+∠D).理由如下:
∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠EBC+∠FCB)=180°﹣[360°﹣(∠ABC+∠DCB)]=(∠ABC+∠DCB)=(360°﹣∠A﹣∠D)=180°﹣(∠A+∠D).
(3)∠P=180°﹣(∠GCD+∠HDC)=180°﹣(180°﹣∠BCD+180°﹣∠CDE)=(∠BCD+∠CDE)=[(6﹣2)×180°﹣(∠A+∠B+∠E+∠F)]=360°﹣(∠A+∠B+∠E+∠F).
故答案为:∠P=360°﹣(∠A+∠B+∠E+∠F)
18.(春•溧水区期末)如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.
(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;
(2)如图②,在四边形ABCD中,∠ABC与∠ADC的平分线交于点O.若∠A=50°,∠C=150°,求∠BOD的度数;
(3)如图③,BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.请直接写出∠A、∠C与∠O的数量关系 ∠C﹣∠A=2∠O .
【解答】解:(1)猜想:∠1+∠2=∠A+∠C,
∵∠1+∠ABC+∠2+∠ADC=360°,
又∵∠A+∠ABC+∠C+∠ADC=360°,
∴∠1+∠2=∠A+∠C;
(2)∵∠A=50°,∠C=150°,
∴∠ABC+∠ADC=360°﹣200°=160°,
又∵BO、DO分别平分∠ABC与∠ADC,
∴∠OBC=∠ABC,∠ODC=∠ADC,
∴∠OBC+∠ODC=(∠ABC+∠ADC)=80°,
∴∠BOD=360°﹣(∠OBC+∠ODC+∠C)=130°;
(3)∠A、∠C与∠O的数量关系为为:
∠C﹣∠A=2∠O.
理由如下:
∵BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.
∴∠FDC=2∠FDO=2∠ODC,∠EBC=2∠EBO=2∠CBO,
由(1)可知:
∠FDO+∠EBO=∠A+∠O,
2∠FDO+2∠EBO=∠A+∠C,
∴2∠A+2∠O=∠A+∠C,
∴∠C﹣∠A=2∠O.
故答案为:∠C﹣∠A=2∠O.
19.(2021秋•昌吉州期中)四边形ABCD中,∠A=145°,∠D=75°.
(1)如图1,若∠B=∠C,试求出∠C的度数;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;
(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.
②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.
【解答】解:(1)∵四边形ABCD中,∠A=145°,∠D=75°,
∴∠B+∠C=360°﹣(145°+75°)=140°,
∵∠B=∠C,
∴∠C=70°;
(2)∵BE∥AD,
∴∠ABE=180°﹣∠A=180°﹣145°=35°,
∵∠ABC的角平分线BE交DC于点E,
∴∠ABC=70°,
∴∠C=360°﹣(145°+75°+70°)=70°;
(3)①∵四边形ABCD中,∠A=145°,∠D=75°,
∴∠B+∠C=360°﹣(145°+75°)=140°,
∵∠ABC和∠BCD的角平分线交于点E,
∴∠EBC+∠ECB=70°,
∴∠BEC=180°﹣70°=110°;
②不变.
∵∠F=40°,
∴∠FBC+∠BCF=180°﹣40°=140°,
∵∠ABC和∠BCD的角平分线交于点E,
∴∠EBC+∠ECB=70°,
∴∠BEC=180°﹣70°=110°.
20.(春•古冶区期中)如图,四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.
(1)求证:∠BAG=∠BGA;
(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.
①若点E在线段AD上,求∠AFC的度数;
②若点E在DA的延长线上,直接写出∠AFC的度数;
(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.
【解答】(1)证明:∵AD∥BC,
∴∠GAD=∠BGA,
∵AG平分∠BAD,
∴∠BAG=∠GAD,
∴∠BAG=∠BGA;
(2)解:①∵CF平分∠BCD,∠BCD=90°,
∴∠GCF=45°,
∵AD∥BC,
∴∠AEF=∠GCF=45°,
∵∠ABC=50°,
∴∠DAB=180°﹣50°=130°,
∵AG平分∠BAD,
∴∠BAG=∠GAD=65°,
∴∠AFC=65°﹣45°=20°;
②如图4,∵∠AGB=65°,∠BCF=45°,
∴∠AFC=∠CGF+∠BCF=115°+45°=160°;
(3)解:有两种情况:
①当M在BP的下方时,如图5,
设∠ABC=3x
∵∠ABP=2∠PBG,
∴∠ABP=2x,∠PBG=x,
∵AG∥CH,
∴∠BCH=∠AGB=,
∵∠BCD=90°,
∴∠DCH=∠PBM=90°﹣=,
∴∠ABM=∠ABP+∠PBM=2x+=,
∴∠ABM:∠PBM=:=;
②当M在BP的上方时,如图6,
同理得:∠ABM=∠ABP﹣∠PBM=2x﹣x=x,
∴∠ABM:∠PBM=x:=;
综上,∠ABM:∠PBM的值是或.
21.(2021秋•通榆县期末)如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?
【解答】解:设这个多边形的边数为n,根据题意,得
(n﹣2)•180=360×3+180,
解得:n=9.
则这个多边形的边数是9.
22.(2020春•东台市期中)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.
(1)如图1,若α+β=100°,求∠MBC+∠NDC的度数;
(2)如图1,若BE与DF相交于点G,∠BGD=40°,请直接写出α、β所满足的数量关系式;
(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.
【解答】解:(1)∵∠ABC+∠ADC=360°﹣(α+β),
∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=α+β=100°.
(2)β﹣α=80°
理由:如图1,连接BD,
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分别平分四边形的外角∠MBC和∠NDC,
∴∠CBG=∠MBC,∠CDG=∠NDC,
∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),
在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,
在△BDG中,∠GBD+∠GDB+∠BGD=180°,
∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,
∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,
∴(α+β)+180°﹣β+40°=180°,
∴β﹣α=80°,
(3)平行,
理由:如图2,延长BC交DF于H,
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分别平分四边形的外角∠MBC和∠NDC,
∴∠CBE=∠MBC,∠CDH=∠NDC,
∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),
∵∠BCD=∠CDH+∠DHB,
∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,
∴∠CBE+β﹣∠DHB=(α+β),
∵α=β,
∴∠CBE+β﹣∠DHB=(β+β)=β,
∴∠CBE=∠DHB,
∴BE∥DF.
23.(2020春•泰州期末)已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).
(1)∠ABC+∠ADC= 360°﹣x﹣y (用含x、y的代数式直接填空);
(2)如图1,若x=y=90°.DE平分∠ADC,BF平分∠CBM,请写出DE与BF的位置关系,并说明理由;
(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角.
①若x+y=120°,∠DFB=20°,试求x、y.
②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.
【解答】解:(1)∵∠A+∠ABC+∠C+∠ADC=360°,∠A=x,∠C=y,
∴∠ABC+∠ADC=360°﹣x﹣y.
故答案为:360°﹣x﹣y.
(2)DE⊥BF.
理由:如图1,∵DE平分∠ADC,BF平分∠MBC,
∴∠CDE=∠ADC,∠CBF=∠CBM,
又∵∠CBM=180°﹣∠ABC=180°﹣(180°﹣∠ADC)=∠ADC,
∴∠CDE=∠CBF,
又∵∠DGC=∠BGE,
∴∠BEG=∠C=90°,
∴DE⊥BF;
(3)①由(1)得:∠CDN+∠CBM=360°﹣(360°﹣x﹣y)=x+y,
∵BF、DF分别平分∠CBM、∠CDN,
∴∠CDF+∠CBF=(x+y),
如图2,连接DB,则∠CBD+∠CDB=180°﹣y,
∴∠FBD+∠FDB=180°﹣y+(x+y)=180°﹣y+x,
∴∠DFB=y﹣x=20°,
解方程组:,
可得:;
②当x=y时,∠FBD+∠FDB=180°﹣y+x=180°,
∴∠ABC、∠ADC相邻的外角平分线所在直线互相平行,
此时,∠DFB不存在.
24.(春•江都区期中)如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 3 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数.
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 360° .
【解答】解:(1)在图2中有△AMC和△PMD,△AOC和△BOD,△AOC和△NOD,
共3个以线段AC为边的“8字形”,
故答案为3;
(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为:360°.
25.(2019•遵化市一模)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.
【解答】解:∵∠EAB+∠ABC+∠C+∠D+∠E=540°,∠C=100°,∠D=75°,∠E=135°
∴∠EAB+∠ABC=540°﹣∠C﹣∠D﹣∠E=230°,
∵AP平分∠EAB
∴,
同理可得,,
∵∠P+∠PAB+∠PBA=180°,
∴∠P=180°﹣∠PAB﹣∠PBA====65°.
26.(春•泗阳县校级期末)如图:线段AB、CD相交于点O,连接AD、CB,我们把这个图形称为“8字型”.根据三角形内角和容易得到:∠A+∠D=∠C+∠B.
(1)用“8字型”
如图(1):∠A+∠B+∠C+∠D+∠E+∠F= 360° .
(2)造“8字型”
如图(2):∠A+∠B+∠C+∠D+∠E+∠F+∠G= 540° .
(3)发现“8字型”
如图(3):BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线.
①图中共有 6 个“8字型”;
②若∠B:∠D:∠F=4:6:x,求x的值.
【解答】(1)∵∠A+∠B=∠GKH+∠GHK,
∠C+∠D=∠GHK+∠HGK,
∠E+∠F=∠HGK+∠GKH,
∠A+∠B+∠C+∠D+∠E+∠F=2(∠GKH+∠GHK+∠HGK)=2×180°=360°,故答案为:360°;
(2)如图,连接BC,
∵∠E+∠G=∠GCB+∠EBC,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=五边形FABCD的内角和,
即∠A+∠B+∠C+∠D+∠E+∠F+∠G=(5﹣2)•180°=540°,
故答案为:540°;
(3)①图中共有6个“8字型”;
故答案为:6.
②:∵CF平分∠BCD,EF平分∠BED
∴∠DEG=∠AEG,∠ACH=∠BCH,
∵在△DGE和△FGC中,∠DGE=∠FGC
∴∠D+∠DEG=∠F+∠ACH
∵在△BHC和△FHE中,∠BHC=∠FHE
∴∠B+∠BCH=∠F+∠AEG
∴∠D+∠DEG+∠B+∠BCH=∠F+∠ACH+∠F+∠AEG
∴∠D+∠B=2∠F;
∵∠B:∠D:∠F=4:6:x,∠D+∠B=2∠F,
∴x=5.
27.(春•衢州期中)如图所示中的几个图形是五角星和它的变形.
(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;
(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由
(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.
【解答】解:(1)如图:
由三角形外角的性质,得
∠C+∠E=∠1,∠B+∠D=∠2.
由三角形的内角和定理,得∠A+∠1+∠2=180°,
等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;
(2)如图:
由三角形外角的性质,得∠C+∠E=∠1,∠A+∠D=∠2,
由三角形的内角和定理,得∠B+∠1+∠2=180°,
等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;
(3)∵∠ECD是△BCE的一个外角,
∴∠ECD=∠B+∠E(三角形的一个外角等于它不相邻的两个内角的和),
∴∠CAD+∠B+∠ACE+∠D+∠E=∠CAD+∠ACE+∠D+∠ECD=∠CAD+∠ACD+∠D=180°,
故∠CAD+∠B+∠ACE+∠D+∠E等于180°,没有变化.
28.(2020春•襄汾县期末)如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.
(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;
(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.
【解答】解:∵∠ACE=∠A+∠ABC,
∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,
又BD平分∠ABC,CD平分∠ACE,
∴∠ABD=∠DBE,∠ACD=∠ECD,
∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,
∴∠A=2∠D,
∵∠ABC=75°,∠ACB=45°,
∴∠A=60°,
∴∠D=30°;
(2)∠D=(∠M+∠N﹣180°);
理由:延长BM、CN交于点A,
则∠A=∠BMN+∠CNM﹣180°,
由(1)知,∠D=A,
∴∠D=(∠M+∠N﹣180°).
29.(春•嘉兴期中)已知在四边形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= 180 °;
(2)如图①,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明;
(3)如图②,若BE,DE分别四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),试求∠E的度数
【解答】(1)解:∵∠A=∠C=90°,
∴∠ABC+∠ADC=360°﹣90°×2=180°;
故答案为:180°;
(2)解:延长DE交BF于G,
∵DE平分∠ADC,BF平分∠CBM,
∴∠CDE=∠ADC,∠CBF=∠CBM,
又∵∠CBM=180°﹣∠ABC=180°﹣(180°﹣∠ADC)=∠ADC,
∴∠CDE=∠CBF,
又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,
∴∠BGE=∠C=90°,
∴DG⊥BF,
即DE⊥BF;
(3)解:由(1)得:∠CDN+∠CBM=180°,
∵BE、DE分别四等分∠ABC、∠ADC的外角,
∴∠CDE+∠CBE=×180°=45°,
延长DC交BE于H,
由三角形的外角性质得,∠BHD=∠CDE+∠E,∠BCD=∠BHD+∠CBE,
∴∠BCD=∠CBE+∠CDE+∠E,
∴∠E=90°﹣45°=45°
30.(2021春•九龙坡区期末)已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).
(1)∠ABC+∠ADC= 360°﹣α﹣β (用含α、β的代数式直接填空);
(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为 ① 角(只填序号);
①锐角;
②直角;
③钝角.
(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;
②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.
【解答】解:(1)∵四边形内角和等于360°,
∴∠A+∠ABC+∠C+∠ADC=360°.
∴∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.
故答案为:360°﹣α﹣β.
(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β.
∵α=β=90°,
∴∠ABC+∠ADC=360°﹣90°﹣90°=180°.
∵DG平分∠CDN,
∴∠CDG==.
∵BE平分∠ABC,
∴∠ABE=∠CBE.
∴∠ABD<∠CBD.
又∵∠A=∠C=90°,
∴∠ABD+∠ADB=∠CBD+∠CDB.
∴∠ADB>∠BDC.
∴2∠BDC<∠BDC+∠ADB=∠ADC.
∴∠BDC<.
∴0<∠BDG=∠CDG+∠BDC=90°﹣+∠BDC<90°﹣+=90°.
∴∠BDG为锐角.
故答案为:①.
(3)①:如图3,连接PC并延长至Q.
∵BP平分∠MBC,
∴∠PBC=.
同理可证:∠CDP=.
∵∠QCB=∠PBC+∠BPC,∠QCD=∠CDP+∠CPD,
∴∠QCB+∠QCD=∠CBP+∠BPC+∠CDP+∠CPD.
∴∠BCD=∠PBC+∠CDP+∠BPD.
∴β=90°﹣+90°﹣+30°.
∴β=210°﹣=210°﹣.
∴β﹣α=60°.
又∵α+β=110°,
∴α=25°,β=85°.
②:∠BPD不一定存在,当α=β时,∠BPD不存在.
如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE.
由①,可证:∠EBC=90°﹣,∠CDF=90°﹣.
由(1)得:∠ABC+∠ADC=360°﹣α﹣β.
∴∠ADC=360°﹣α﹣β﹣∠ABC.
∴∠CDF=.
∵BE∥GH,
∴∠BCG=∠EBC=90°﹣.
∴∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.
若∠CDF=∠GCD,则=β+﹣90°,即α=β.
∴GH∥DF.
又∵BE∥GH,
∴BE∥DF.
此时,P不存在,即∠BPD不存在.
∴当α=β时,∠BPD不存在.
【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题13 反比例函数图象和性质(三大类型): 这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题13 反比例函数图象和性质(三大类型),文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题13反比例函数图象和性质三大类型解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题13反比例函数图象和性质三大类型原卷版docx等2份学案配套教学资源,其中学案共37页, 欢迎下载使用。
【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题12 特殊平行四边形中的折叠问题(三大类型): 这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题12 特殊平行四边形中的折叠问题(三大类型),文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题12特殊平行四边形中的折叠问题三大类型解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题12特殊平行四边形中的折叠问题三大类型原卷版docx等2份学案配套教学资源,其中学案共46页, 欢迎下载使用。
【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题11 特殊平行四边形中的最小值问题(三大类型): 这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题11 特殊平行四边形中的最小值问题(三大类型),文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题11特殊平行四边形中的最小值问题三大类型解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题11特殊平行四边形中的最小值问题三大类型原卷版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。