![【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)01](http://m.enxinlong.com/img-preview/2/3/14369436/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)02](http://m.enxinlong.com/img-preview/2/3/14369436/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)03](http://m.enxinlong.com/img-preview/2/3/14369436/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)01](http://m.enxinlong.com/img-preview/2/3/14369436/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)02](http://m.enxinlong.com/img-preview/2/3/14369436/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)03](http://m.enxinlong.com/img-preview/2/3/14369436/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题07 实数相关运算(3大类型)(原卷版+解析版) 学案 14 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题08 平面直角坐标系中图形面积的求法(3大类型)(原卷版+解析版) 学案 10 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题10 平行线常考解答压轴题高分突破(30道)(原卷版+解析版) 学案 8 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题11 平行线中翻折求角度问题高分突破(原卷版+解析版) 学案 6 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题12 平行拐点综合应用高分突破(40道)(原卷版+解析版) 学案 8 次下载
【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版)
展开专题09 平面直角坐标系中坐标规律(六大类型)
【典例1】(2021秋•广饶县月考)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2021的坐标为 .
【变式1-1】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2019的坐标为( )
A.(1009,0) B.(1009,1) C.(1010,0) D.(1010,1)
【变式1-2】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A2022的坐标为( )
A.(1011,0) B.(1011,1) C.(2022,0) D.(2022,1)
【典例2】如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(1,﹣1) B.(﹣1,1) C.(﹣1,﹣2) D.(1,﹣2)
【变式2-1】如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D
(1,﹣2),把一条长为2022个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(0,﹣2) B.(﹣1,1) C.(﹣1,0) D.(0,1)
【变式2-2】如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2024个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D…的规律绕在ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(﹣1,0) B.(﹣1,﹣1) C.(0,﹣2) D.(1,﹣2)
【典例3】如图,在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…,如此继续运动下去,则P2021的坐标为( )
A.(1011,1011) B.(1010,﹣1011)
C.(504,﹣505) D.(505,﹣504)
【变式3-1】(2020春•定襄县期末)如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2020的坐标为 .
【变式3-3】如图,在平面直角坐标系中,一动点从原点O出发,向右平移3个单位长度到达点A1,再向上平移6个单位长度到达点A2,再向左平移9个单位长度到达点A3,再向下平移12个单位长度到达点A4,再向右平移15个单位长度到达点A5……按此规律进行下去,该动点到达的点A2022的坐标是( )
A.(3030,3033) B.(3030,3030)
C.(3033,﹣3030) D.(3033,3036)
【典例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2018个点的坐标为( )
A.(45,9) B.(45,11) C.(45,7) D.(46,0)
【变式4】如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第2022个点的坐标为( )
A.(45,1) B.(45,2) C.(45,3) D.(45,4)
【典例5】如图,在平面直角坐标系上有个点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2019次跳动至点A2019的坐标是( )
A.(﹣505,1009) B.(505,1010)
C.(﹣504,1009) D.(504,1010)
【变式5】如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,……依此规律跳动下去,点A第2022次跳动至点A2022的坐标是( )
A.(505,1010) B.(﹣506,1010)
C.(﹣506,1011) D.(506,1011)
【典例6】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1跳动至点A2(1,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(2,2),……依此规律跳动下去,则点A2021与点A2022之间的距离是( )
A.2023 B.2022 C.2021 D.2020
【变式6】如图,在平面直角坐标系上有一点A(1,0),点A第一次向左跳动至点A1(﹣1,1),第二次向右跳动至点A2(2,1),第三次向左跳动至点A3(﹣2,2),第四次向右跳动至点A4(3,2),……以此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )
A.(1010,1009) B.( 1011,1010)
C.(1012,1011) D.(1010,1010)
1.如图,动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2023次运动到点( )
A.(2023,0) B.(2023,1) C.(2023,2) D.(2022,0)
2.如图,在平面直角坐标系中,有若干个整点,按图中→方向排列,即(0,0)→(0,1)→(1,1)→(2,2)→(2,3)→(3,3)→(4,4),……,则按此规律排列下去第23个点的坐标为( )
A.(13,13) B.(14,14) C.(15,15) D.(14,15)
3.如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),…根据这个规律,点A2023的坐标是( )
A.(2022,0) B.(2023,0) C.(2023,2) D.(2023,﹣2)
4.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),……,根据这个规律,第2019个点的坐标为( )
A.(45,10) B.(45,6) C.(45,22) D.(45,0)
6.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2022的坐标为( )
A.(1,1011) B.(﹣1,1011) C.(1011,0) D.(﹣1011,0)
7.如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是( )
A.(505,1009) B.(﹣506,1010)
C.(﹣506,1011) D.(506,1011)
8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是( )
A.(﹣2020,0) B.(﹣2020,1) C.(﹣2020,2) D.(2020,0)
9.如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.﹣1008 B.﹣1010 C.1012 D.﹣1012
10.如图,正方形的边长依次为2,4,6,8,……,它们在直角坐标系中的位置如图所示,其中A1(1,1),A2(﹣1,1),A3(﹣1,﹣1),A4(1,﹣1),A5(2,2),A6(﹣2,2),A7(﹣2,﹣2),A8(2,﹣2),A9(3,3),A10(﹣3,3),……,按此规律接下去,则A2016的坐标为( )
A.(﹣504,﹣504) B.(504,﹣504)
C.(﹣504,504) D.(504,504)
11.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,……均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)……,根据这个规律,点P2022的坐标为( )
A.(﹣505,﹣505) B.(505,﹣506)
C.(505,505) D.(﹣505,506)
12.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2022个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(﹣1,0) B.(1,﹣2) C.(﹣1,1) D.(0,﹣2)
13.在如图所示的平面直角坐标系中,一动点A从点A1(0,1)出发,按箭头所示的方向不断地移动,依次可以得到A2(1,0),A3(2,﹣1),A4(3,0),A5(4,1),A6(5,0),A7(6,﹣1),A8(7,0),…,按照这样的规律移动下去,那么点A2022的坐标为( )
A.(2021,0) B.(2021,1) C.(2021,﹣1) D.(2022,0)
【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题13 因式分解(七大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题13 因式分解(七大类型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题13因式分解七大类型解析版docx、期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题13因式分解七大类型原卷版docx等2份学案配套教学资源,其中学案共36页, 欢迎下载使用。
【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题10 幂运算(三大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题10 幂运算(三大类型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题10幂运算三大类型解析版docx、期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题10幂运算三大类型原卷版docx等2份学案配套教学资源,其中学案共12页, 欢迎下载使用。
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题09 勾股定理之赵爽弦图模型综合应用(2大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题09 勾股定理之赵爽弦图模型综合应用(2大类型)(原卷版+解析版),文件包含专题09勾股定理之赵爽弦图模型综合应用2大类型解析版docx、专题09勾股定理之赵爽弦图模型综合应用2大类型原卷版docx等2份学案配套教学资源,其中学案共34页, 欢迎下载使用。