所属成套资源:中考数学专题专项训练与解析全套
中考训练类比归纳专题:比例式、等积式的常见证明方法专项训练与解析
展开
这是一份中考训练类比归纳专题:比例式、等积式的常见证明方法专项训练与解析,共3页。
类比归纳专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗 类型一 三点定型法:找线段对应的三角形,利用相似证明1.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E,连接AG.(1)求证:AG=CG;(2)求证:AG2=GE·GF. 2.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)若FD=2FB,求的值;(2)若AC=2,BC=,求S△FDC的值. 类型二 利用等线段代换3.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.求证:=. 类型三 找中间比利用等积式代换4.如图,已知CE是Rt△ABC斜边AB上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP,垂足为G,交CE于D,求证:CE2=PE·DE. 参考答案与解析1.证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F=∠FCD.在△ADG与△CDG中,∴△ADG≌△CDG,∴∠EAG=∠DCG,AG=CG.(2)∵∠EAG=∠DCG,∠F=∠DCG,∴∠EAG=∠F.又∵∠AGE=∠FGA,∴△AGE∽△FGA,∴=,∴AG2=GE·GF.2.解:(1)∵∠ACB=90°,CD⊥AB,∴∠A+∠ABC=∠DCB+∠ABC,∴∠A=∠DCB.∵E是AC的中点,∠ADC=90°,∴ED=EA,∴∠A=∠EDA.∵∠BDF=∠EDA,∴∠DCB=∠BDF.又∵∠F=∠F,∴△BDF∽△DCF,∴FD∶CF=BF∶FD=1∶2.(2)∵∠ACB=90°,CD⊥AB,∴∠BDC=∠ACB.∵∠ABC=∠CBD,∴△BDC∽△BCA,∴BD∶CD=BC∶AC=∶2=1∶2.在Rt△BAC中,由勾股定理可得AB=5,∴==,∴S△BDC=××2×=3.∵△BDF∽△DCF,∴==,即=.∵S△BDC=3,∴S△FDC=4.3.证明:∵AB=AD,∴∠ADB=∠ABE.∵∠ADB=∠ACB,∴∠ABE=∠ACB.又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=.又∵AB=AD,∴=.4.证明:∵∠ACB=90°,CE⊥AB,∴∠ACE+∠BCE=90°,∠ACE+∠CAE=90°,∴∠CAE=∠BCE,∴Rt△ACE∽Rt△CBE,∴=,∴CE2=AE·BE.又∵BG⊥AP,CE⊥AB,∴∠DEB=∠DGP=∠PEA=90°.∵∠1=∠2,∴∠P=∠3,∴△AEP∽△DEB,∴=,∴PE·DE=AE·BE,∴CE2=PE·DE.
相关试卷
这是一份【课时训练】北师大版数学九年级上册--第4章《图形的相似》专题训练5 等积式与比例式的证明(pdf版,含答案),文件包含课时训练参考答案全册pdf、第4章《图形的相似》专题训练5等积式与比例式的证明pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份中考训练解题技巧专题:正方形中特殊的证明(计算)方法专项训练与解析,共3页。试卷主要包含了3eq \r等内容,欢迎下载使用。
这是一份中考训练类比归纳专题:有关中点的证明与计算专项训练与解析,共4页。