![2023年高考数学考前信息必刷卷(五)(福建卷)含答案第1页](http://m.enxinlong.com/img-preview/3/3/14323734/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年高考数学考前信息必刷卷(五)(福建卷)含答案第2页](http://m.enxinlong.com/img-preview/3/3/14323734/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年高考数学考前信息必刷卷(五)(福建卷)含答案第3页](http://m.enxinlong.com/img-preview/3/3/14323734/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:全套2023年高考数学考前信息卷含答案
2023年高考数学考前信息必刷卷(五)(福建卷)含答案
展开
这是一份2023年高考数学考前信息必刷卷(五)(福建卷)含答案,共21页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
绝密★启用前2023年高考数学考前信息必刷卷05新高考地区专用一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则z的虚部为( )A. B. C.2 D.2.已知集合,,则( )A. B. C. D.3.已知函数,图像上每一点的横坐标缩短到原来的,得到的图像,的部分图像如图所示,若,则等于( )A. B. C. D.4.为做好“甲型流感”传染防控工作,某校坚持每日测温报告,以下是高三一班,二班各10名同学的体温记录(从低到高):高三一班:36.1,36.2,,36.4,36.5,36.7,36.7,36.8,36.8,37.0(单位:℃),高三二班:36.1,36.1,36.3,36.3,36.4,36.4,36.5,36.7,,37.1(单位:℃)若这两组数据的第25百分位数、第90百分位数都分别对应相等,则为( )A.0.6 B.0.5 C.0.4 D.0.35.如图,直三棱柱中,,,,点是的中点,点是线段上一动点,点在平面上移动,则,两点之间距离的最小值为( )A. B. C. D.16.如图所示,当篮球放在桌面并被斜上方一个灯泡(当成质点)发出的光线照射后,在桌面上留下的影子是椭圆,且篮球与桌面的接触点是椭圆的右焦点.若篮球的半径为个单位长度,灯泡与桌面的距离为个单位长度,灯泡垂直照射在平面上的点为,椭圆的右顶点到点的距离为个单位长度,则此时椭圆的离心率等于( )A. B. C. D.7.已知数列满足:当时,,其中为正整数,则使得不等式成立的的最小值为( )A. B. C. D.8.已知,,.其中为自然对数的底数,则( )A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. “50米跑”是《国家学生体质健康标准》测试项目中的一项.已知某地区高中女生的“50米跑”测试数据(单位:秒)服从正态分布,且.现从该地区高中女生中随机抽取5人,并记这5人“50米跑”的测试数据落在内的人数为,则下列正确的有( )A. B.C. D.10.如图,在直角梯形ABCD中,,,,是的中点,则( )A. B.C. D.11.在中,所对的边为,,边上的高为,则下列说法中正确的是( )A. B. C.的最小值为 D.的最大值为12.设,当时,规定,如,.则( )A.B.C.设函数的值域为M,则M的子集个数为32D.三、填空题:本题共4小题,每小题5分,共20分.13.为了研究高三(1)班女生的身高x(单位;cm)与体重y(单位:kg)的关系,从该班随机抽取10名女生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某女生的身高为170cm,据此估计其体重为________________kg.14.如图,已知圆的方程为,圆的方程为,若动圆与圆内切与圆外切.则动圆圆心的轨迹的方程为___________.15.随着疫情解除,经济形势逐渐好转,很多公司的股票价格开始逐步上升.经调查,A公司的股价在去年年初(时)的股价是每股5元人民币,到了年末(时)涨到了每股6元人民币.经过建立模型分析发现,在第t个月的时候,A公司的股价可以用函数来表示,其中k为常数.假设A公司的股价继续按照上述的模型持续增长,则当A公司的股价涨到10元时,t的值约为______(结果精确到个位数,参考数据:,,.)16.刺绣是中国优秀的民族传统工艺之一,已经有2000多年的历史.小王同学在刺绣选修课上,设计了一个螺旋形图案--即图中的阴影部分.它的设计方法是:先画一个边长为3的正三角形,取正三角形各边的三等分点,得到第一个阴影三角形;在正三角形中,再取各边的三等分点,得到第二个阴影三角形;继续依此方法,直到得到图中的螺旋形图案,则______;图中螺旋形图案的面积为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知锐角△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求c的取值范围.18.(12分)已知正项数列的前n项和为,且 ,, .(1)求;(2)在数列的每相邻两项之间依次插入,得到数列 ,求的前100项和.19.(12分) “稻草很轻,但是他迎着风仍然坚韧,这就是生命的力量,意志的力量”“当你为未来付出踏踏实实努力的时候,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现”……当读到这些话时,你会切身体会到读书破万卷给予我们的力量.为了解某普通高中学生的阅读时间,从该校随机抽取了名学生进行调查,得到了这名学生一周的平均阅读时间(单位:小时),并将样本数据分成九组,绘制成如图所示的频率分布直方图.(1)求的值;(2)为进一步了解这名学生阅读时间的分配情况,从周平均阅读时间在,,三组内的学生中,采用分层抽样的方法抽取了人,现从这人中随机抽取人,记周平均阅读时间在内的学生人数为,求的分布列和数学期望;(3)以样本的频率估计概率,从该校所有学生中随机抽取名学生,用表示这名学生中恰有名学生周平均阅读时间在内的概率,其中.当最大时,写出的值.20.(12分)在苏州博物馆有一类典型建筑八角亭,既美观又利于采光,其中一角如图所示,为多面体,,,,底面,四边形是边长为2的正方形且平行于底面,,,的中点分别为,,,.(1)证明:平面;(2)求平面与平面夹角的余弦值;(3)一束光从玻璃窗面上点射入恰经过点(假设此时光经过玻璃为直射),求这束光在玻璃窗上的入射角的正切值.21.(12分)在平面直角坐标系中,已知椭圆:焦距为2,过点的直线与椭圆交于两点.当直线过原点时,.(1)求椭圆的标准方程;(2)若存在直线,使得,求的取值范围.22.(12分)我国南北朝时期的数学家祖冲之(公元429年-500年)计算出圆周率的精确度记录在世界保持了千年之久,德国数学家鲁道夫(公元1540年-1610年)用一生精力计算出了圆周率的35位小数,随着科技的进步,一些常数的精确度不断被刷新.例如:我们很容易能利用计算器得出函数的零点的近似值,为了实际应用,本题中取的值为-0.57.哈三中毕业生创办的仓储型物流公司建造了占地面积足够大的仓库,内部建造了一条智能运货总干线,其在已经建立的直角坐标系中的函数解析式为,其在处的切线为,现计划再建一条总干线,其中m为待定的常数.注明:本题中计算的最终结果均用数字表示.(1)求出的直线方程,并且证明:在直角坐标系中,智能运货总干线上的点不在直线的上方;(2)在直角坐标系中,设直线,计划将仓库中直线与之间的部分设为隔离区,两条运货总干线、分别在各自的区域内,即曲线上的点不能越过直线,求实数m的取值范围.
绝密★启用前2023年高考数学考前信息必刷卷05新高考地区专用一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1. 【答案】C2. 【答案】D3. 【答案】A4.【答案】C5.【答案】A6. 【答案】D7. 【答案】C8. 【答案】B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 【答案】BC10. 【答案】ABC11. 【答案】ABD12. 【答案】BCD三、填空题:本题共4小题,每小题5分,共20分.13.为了研究高三(1)班女生的身高x(单位;cm)与体重y(单位:kg)的关系,从该班随机抽取10名女生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某女生的身高为170cm,据此估计其体重为________________kg.【答案】54.5【详解】,,故,解得:,故回归直线方程为,则当时,(kg).故答案为:54.514.如图,已知圆的方程为,圆的方程为,若动圆与圆内切与圆外切.则动圆圆心的轨迹的方程为___________.【答案】【详解】因为圆的圆心为,半径为,圆的圆心为,半径为,设动圆的半径为,因为动圆与圆内切,与圆外切,所以,,于是,所以动圆圆心的轨迹是以为焦点,长轴长为的椭圆,从而,所以.所以动圆圆心的轨迹的方程为.故答案为:.15.随着疫情解除,经济形势逐渐好转,很多公司的股票价格开始逐步上升.经调查,A公司的股价在去年年初(时)的股价是每股5元人民币,到了年末(时)涨到了每股6元人民币.经过建立模型分析发现,在第t个月的时候,A公司的股价可以用函数来表示,其中k为常数.假设A公司的股价继续按照上述的模型持续增长,则当A公司的股价涨到10元时,t的值约为______(结果精确到个位数,参考数据:,,.)【答案】42【详解】解:因为A公司的股价在时是每股5元人民币,所以,所以.经过12个月后,得到,所以.根据题意,要股价涨到10元,则,所以,所以.故答案为:42.16.刺绣是中国优秀的民族传统工艺之一,已经有2000多年的历史.小王同学在刺绣选修课上,设计了一个螺旋形图案--即图中的阴影部分.它的设计方法是:先画一个边长为3的正三角形,取正三角形各边的三等分点,得到第一个阴影三角形;在正三角形中,再取各边的三等分点,得到第二个阴影三角形;继续依此方法,直到得到图中的螺旋形图案,则______;图中螺旋形图案的面积为______.【答案】 【详解】解:设正三角形的边长为,后续各正三角形的边长依次为,,,设第一个阴影三角形面积为,后续阴影三角形面积为由题意知,,,所以为以为首项,为公比的等比数列,所以,所以,所以;所以,又,所以是以为首项,为公比的等比数列,故图中阴影部分面积为,故答案为:;.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知锐角△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求c的取值范围.【答案】(1)(2)【详解】(1)由已知及正弦定理,得,即,∴.又∵,∴;(2)由(1)及正弦定理得,∵,∴,∴.∵,∴,,∴,∴.18.(12分)已知正项数列的前n项和为,且 ,, .(1)求;(2)在数列的每相邻两项之间依次插入,得到数列 ,求的前100项和.【答案】(1),(2)186【详解】(1)因为,当时,, 因为,所以,故.当时,适合上式,所以,.(2)(方法1)因为,,所以当时,.所以所以数列:1,1,2,1,2,2,1,2,2,2,……,设,则,因为,所以. 所以的前100项是由14个1与86个2组成.所以. (方法2)设,则,因为,所以. 根据数列的定义,知.19.(12分) “稻草很轻,但是他迎着风仍然坚韧,这就是生命的力量,意志的力量”“当你为未来付出踏踏实实努力的时候,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现”……当读到这些话时,你会切身体会到读书破万卷给予我们的力量.为了解某普通高中学生的阅读时间,从该校随机抽取了名学生进行调查,得到了这名学生一周的平均阅读时间(单位:小时),并将样本数据分成九组,绘制成如图所示的频率分布直方图.(1)求的值;(2)为进一步了解这名学生阅读时间的分配情况,从周平均阅读时间在,,三组内的学生中,采用分层抽样的方法抽取了人,现从这人中随机抽取人,记周平均阅读时间在内的学生人数为,求的分布列和数学期望;(3)以样本的频率估计概率,从该校所有学生中随机抽取名学生,用表示这名学生中恰有名学生周平均阅读时间在内的概率,其中.当最大时,写出的值.【答案】(1)(2)分布列见解析;数学期望(3)【详解】(1),.(2)由频率分布直方图可得:周平均阅读时间在,,三组的频率之比为,人中,周平均阅读时间在的人数为人;在的人数为人;在的人数为人;则所有可能的取值为,;;;;的分布列为:数学期望.(3)用频率估计概率,从该校所有学生中随机抽取名学生,周平均阅读时间在内的概率;则,若最大,则最大,当时,取得最大值.20.(12分)在苏州博物馆有一类典型建筑八角亭,既美观又利于采光,其中一角如图所示,为多面体,,,,底面,四边形是边长为2的正方形且平行于底面,,,的中点分别为,,,.(1)证明:平面;(2)求平面与平面夹角的余弦值;(3)一束光从玻璃窗面上点射入恰经过点(假设此时光经过玻璃为直射),求这束光在玻璃窗上的入射角的正切值.【答案】(1)证明见解析(2)(3)【详解】(1)过点作的平行线,由题意可知以为原点,建立如图所示空间直角坐标系,则,,,,,,,,,,.设平面的法向量为,,,,,令,则,∵,∴,平面.(2)根据图形易知平面的法向量为,设平面与平面的夹角为,则.所以平面与平面夹角的余弦值.(3),入射角为,,因为,所以,.故这束光在玻璃窗上的入射角的正切值为.21.(12分)在平面直角坐标系中,已知椭圆:焦距为2,过点的直线与椭圆交于两点.当直线过原点时,.(1)求椭圆的标准方程;(2)若存在直线,使得,求的取值范围.【答案】(1)(2)【详解】(1)因为直线过原点时,,设,由可得:,即设不妨点在第一象限,所以,代入椭圆的方程,可得,又由题意可知,,且,解得,,所以椭圆的标准方程为;(2)易知直线的斜率存在,设:,与椭圆的方程联立,消去,整理得,由题意可知,,整理得,解得,设,,则,,①由题意,,将①代入上式,整理得,有,由,则,故,即.22.(12分)我国南北朝时期的数学家祖冲之(公元429年-500年)计算出圆周率的精确度记录在世界保持了千年之久,德国数学家鲁道夫(公元1540年-1610年)用一生精力计算出了圆周率的35位小数,随着科技的进步,一些常数的精确度不断被刷新.例如:我们很容易能利用计算器得出函数的零点的近似值,为了实际应用,本题中取的值为-0.57.哈三中毕业生创办的仓储型物流公司建造了占地面积足够大的仓库,内部建造了一条智能运货总干线,其在已经建立的直角坐标系中的函数解析式为,其在处的切线为,现计划再建一条总干线,其中m为待定的常数.注明:本题中计算的最终结果均用数字表示.(1)求出的直线方程,并且证明:在直角坐标系中,智能运货总干线上的点不在直线的上方;(2)在直角坐标系中,设直线,计划将仓库中直线与之间的部分设为隔离区,两条运货总干线、分别在各自的区域内,即曲线上的点不能越过直线,求实数m的取值范围.【答案】(1),证明见解析.(2)【详解】(1)解:由函数,可得,则且,所以的方程为,即因为函数的零点的近似值,即,所以,可得又因为,所以的直线方程为令其中,则,令,解得,当时,,单调递增;当时,,单调递减,所以当时,函数取得极大值,也为最大值,即,所以在直角坐标系中,智能运货总干线上的点不在直线的上方.(2)解:由曲线且,令,要使得两条运货总干线、分别在各自的区域内,则满足恒成立,又由,令,可得,即,当时,,单调递减;当时,,单调递增,当时,函数取得最小值,最小值为,令,即,即,即,因为,可得,又因为函数的零点的近似值,即,所以,则,又由,所以,所以实数的取值范围是.
相关试卷
这是一份2023年高考数学考前信息必刷卷(四)(福建卷)含答案,共22页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年高考数学考前信息必刷卷(三)(福建卷)含答案,共25页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年高考数学考前信息必刷卷(二)(福建卷)含答案,共19页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)