年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2018年天津市中考数学试卷(解析版)

    2018年天津市中考数学试卷(解析版)第1页
    2018年天津市中考数学试卷(解析版)第2页
    2018年天津市中考数学试卷(解析版)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018年天津市中考数学试卷(解析版)

    展开

    这是一份2018年天津市中考数学试卷(解析版),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2018年天津市中考数学试卷
     
    一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.计算(﹣3)+5的结果等于(  )
    A.2 B.﹣2 C.8 D.﹣8
    2.cos60°的值等于(  )
    A. B.1 C. D.
    3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )
    A. B. C. D.
    4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为(  )
    A.0.1263×108 B.1.263×107 C.12.63×106 D.126.3×105
    5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(  )

    A. B. C. D.
    6.估计的值在(  )
    A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
    7.计算的结果为(  )
    A.1 B.a C.a+1 D.
    8.方程组的解是(  )
    A. B. C. D.
    9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是(  )

    A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
    10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是(  )

    A.BC B.CE C.AD D.AC
    12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为(  )
    A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1
     
    二、填空题(本大题共6小题,每小题3分,共18分)
    13.计算x7÷x4的结果等于   .
    14.计算的结果等于   .
    15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是   .
    16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是   (写出一个即可).
    17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为   .

    18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (1)AB的长等于   ;
    (2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)   .

     
    三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
    19.解不等式组
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得   ;
    (2)解不等式②,得   ;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为   .
    20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)本次接受调查的跳水运动员人数为   ,图①中m的值为   ;
    (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
    21.已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
    (1)如图①,求∠T和∠CDB的大小;
    (2)如图②,当BE=BC时,求∠CDO的大小.

    22.如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).
    参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.

    23.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
    设在同一家复印店一次复印文件的页数为x(x为非负整数).
    (1)根据题意,填写下表:
    一次复印页数(页)
    5
    10
    20
    30

    甲复印店收费(元)
    0.5
       
    2
       

    乙复印店收费(元)
    0.6
       
    2.4
       

    (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
    24.将一个直角三角形纸片ABO放置在平面直角坐标系中,点,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
    (1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;
    (2)如图②,当P为AB中点时,求A'B的长;
    (3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).

    25.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).
    (1)求该抛物线的解析式和顶点坐标;
    (2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.
    ①当点P'落在该抛物线上时,求m的值;
    ②当点P'落在第二象限内,P'A2取得最小值时,求m的值.
     

    2018年天津市中考数学试卷
    参考答案与试题解析
     
    一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.计算(﹣3)+5的结果等于(  )
    A.2 B.﹣2 C.8 D.﹣8
    【考点】19:有理数的加法.
    【分析】依据有理数的加法法则计算即可.
    【解答】解:(﹣3)+5=5﹣3=2.
    故选:A.
     
    2.cos60°的值等于(  )
    A. B.1 C. D.
    【考点】T5:特殊角的三角函数值.
    【分析】根据特殊角三角函数值,可得答案.
    【解答】解:cos60°=,
    故选:D.
     
    3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )
    A. B. C. D.
    【考点】P3:轴对称图形.
    【分析】根据轴对称图形的概念对各选项分析判断即可得解.
    【解答】解:A、不可以看作是轴对称图形,故本选项错误;
    B、不可以看作是轴对称图形,故本选项错误;
    C、可以看作是轴对称图形,故本选项正确;
    D、不可以看作是轴对称图形,故本选项错误.
    故选C.
     
    4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为(  )
    A.0.1263×108 B.1.263×107 C.12.63×106 D.126.3×105
    【考点】1I:科学记数法—表示较大的数.
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12630000有8位,所以可以确定n=8﹣1=7.
    【解答】解:12630000=1.263×107.
    故选:B.
     
    5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(  )

    A. B. C. D.
    【考点】U2:简单组合体的三视图.
    【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.
    故选D.
     
    6.估计的值在(  )
    A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
    【考点】2B:估算无理数的大小.
    【分析】利用二次根式的性质,得出<<,进而得出答案.
    【解答】解:∵<<,
    ∴6<<7,
    ∴的值在整数6和7之间.
    故选C.
     
    7.计算的结果为(  )
    A.1 B.a C.a+1 D.
    【考点】6B:分式的加减法.
    【分析】根据分式的运算法则即可求出答案.
    【解答】解:原式==1,
    故选(A)
     
    8.方程组的解是(  )
    A. B. C. D.
    【考点】98:解二元一次方程组.
    【分析】利用代入法求解即可.
    【解答】解:,
    ①代入②得,3x+2x=15,
    解得x=3,
    将x=3代入①得,y=2×3=6,
    所以,方程组的解是.
    故选D.
     
    9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是(  )

    A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
    【考点】R2:旋转的性质.
    【分析】由旋转的性质得到∠ABD=∠CBE=60°,AB=BD,推出△ABD是等边三角形,得到∠DAB=∠CBE,于是得到结论.
    【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,
    ∴∠ABD=∠CBE=60°,AB=BD,
    ∴△ABD是等边三角形,
    ∴∠DAB=60°,
    ∴∠DAB=∠CBE,
    ∴AD∥BC,
    故选C.

     
    10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    【考点】G6:反比例函数图象上点的坐标特征.
    【分析】根据反比例函数的性质判断即可.
    【解答】解:∵k=﹣3<0,
    ∴在第四象限,y随x的增大而增大,
    ∴y2<y3<0,
    ∵y1>0,
    ∴y2<y3<y1,
    故选:B.
     
    11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是(  )

    A.BC B.CE C.AD D.AC
    【考点】PA:轴对称﹣最短路线问题;KH:等腰三角形的性质.
    【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE.
    【解答】解:如图连接PC,

    ∵AB=AC,BD=CD,
    ∴AD⊥BC,
    ∴PB=PC,
    ∴PB+PE=PC+PE,
    ∵PE+PC≥CE,
    ∴P、C、E共线时,PB+PE的值最小,最小值为CE,
    故选B.
     
    12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为(  )
    A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1
    【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.
    【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向,即可得出平移后解析式.
    【解答】解:当y=0,则0=x2﹣4x+3,
    (x﹣1)(x﹣3)=0,
    解得:x1=1,x2=3,
    ∴A(1,0),B(3,0),
    y=x2﹣4x+3
    =(x﹣2)2﹣1,
    ∴M点坐标为:(2,﹣1),
    ∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,
    ∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,
    ∴平移后的解析式为:y=(x+1)2=x2+2x+1.
    故选:A.
     
    二、填空题(本大题共6小题,每小题3分,共18分)
    13.计算x7÷x4的结果等于 x3 .
    【考点】48:同底数幂的除法.
    【分析】根据同底数幂的除法即可求出答案.
    【解答】解:原式=x3,
    故答案为:x3
     
    14.计算的结果等于 9 .
    【考点】79:二次根式的混合运算.
    【分析】根据平方差公式进行计算即可.
    【解答】解:
    =16﹣7
    =9.
    故答案为:9.
     
    15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是  .
    【考点】X4:概率公式.
    【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【解答】解:∵共6个球,有5个红球,
    ∴从袋子中随机摸出一个球,它是红球的概率为.
    故答案为:.
     
    16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 ﹣2 (写出一个即可).
    【考点】F7:一次函数图象与系数的关系.
    【分析】据正比例函数的性质;当k<0时,正比例函数y=kx的图象在第二、四象限,可确定k的取值范围,再根据k的范围选出答案即可.
    【解答】解:∵若正比例函数y=kx的图象在第二、四象限,
    ∴k<0,
    ∴符合要求的k的值是﹣2,
    故答案为:﹣2.
     
    17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为  .

    【考点】LL:梯形中位线定理;KQ:勾股定理;LE:正方形的性质.
    【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.
    【解答】解:延长GE交AB于点O,作PH⊥OE于点H.
    则PH∥AB.
    ∵P是AE的中点,
    ∴PH是△AOE的中位线,
    ∴PH=OA=(3﹣1)=1.
    ∵直角△AOE中,∠OAE=45°,
    ∴△AOE是等腰直角三角形,即OA=OE=2,
    同理△PHE中,HE=PH=1.
    ∴HG=HE+EG=1+1=2.
    ∴在Rt△PHG中,PG===.
    故答案是:.

     
    18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (1)AB的长等于  ;
    (2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明) 如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N.连接DN,EM,DN与EM相交于点P,点P即为所求. .

    【考点】N4:作图—应用与设计作图;KQ:勾股定理.
    【分析】(1)利用勾股定理即可解决问题;
    (2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
    【解答】解:(1)AB==.
    故答案为.

    (2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.

    理由:平行四边形ABME的面积:平行四边形CDNB:平行四边形DEMG=1:2:3,
    △PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,
    ∴S△PAB:S△PBC:S△PCA=1:2:3.
     
    三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
    19.解不等式组
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得 x≥1 ;
    (2)解不等式②,得 x≤3 ;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为 1≤x≤3 .
    【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.
    【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集.
    【解答】解:(1)解不等式①,得:x≥1;
    (2)解不等式②,得:x≤3;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为1≤x≤3,
    故答案为:x≥1,x≤3,1≤x≤3.
     
    20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)本次接受调查的跳水运动员人数为 40 ,图①中m的值为 30 ;
    (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
    【考点】VC:条形统计图;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.
    【分析】(1)频数÷所占百分比=样本容量,m=100﹣27.5﹣25﹣7.5﹣10=30;
    (2)根据平均数、众数和中位数的定义求解即可.
    【解答】解:(1)4÷10%=40(人),
    m=100﹣27.5﹣25﹣7.5﹣10=30;
    故答案为40,30.
    (2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,
    16出现12次,次数最多,众数为16;
    按大小顺序排列,中间两个数都为15,中位数为15.
     
    21.已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
    (1)如图①,求∠T和∠CDB的大小;
    (2)如图②,当BE=BC时,求∠CDO的大小.

    【考点】MC:切线的性质.
    【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;
    (2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.
    【解答】解:(1)如图①,∵连接AC,
    ∵AT是⊙O切线,AB是⊙O的直径,
    ∴AT⊥AB,即∠TAB=90°,
    ∵∠ABT=50°,
    ∴∠T=90°﹣∠ABT=40°,
    由AB是⊙O的直径,得∠ACB=90°,
    ∴∠CAB=90°﹣∠ABC=40°,
    ∴∠CDB=∠CAB=40°;

    (2)如图②,连接AD,
    在△BCE中,BE=BC,∠EBC=50°,
    ∴∠BCE=∠BEC=65°,
    ∴∠BAD=∠BCD=65°,
    ∵OA=OD,
    ∴∠ODA=∠OAD=65°,
    ∵∠ADC=∠ABC=50°,
    ∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.


     
    22.如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).
    参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.

    【考点】TB:解直角三角形的应用﹣方向角问题.
    【分析】如图作PC⊥AB于C.分别在Rt△APC,Rt△PCB中求解即可解决问题.
    【解答】解:如图作PC⊥AB于C.
    由题意∠A=64°,∠B=45°,PA=120,
    在Rt△APC中,sinA=,cosA=,
    ∴PC=PA•sinA=120•sin64°,
    AC=PA•cosA=120•cos64°,
    在Rt△PCB中,∵∠B=45°,
    ∴PC=BC,
    ∴PB==≈153.
    ∴AB=AC+BC=120•cos64°+120•sin64°
    ≈120×0.90+120×0.44
    ≈161.
    答:BP的长为153海里和BA的长为161海里.

     
    23.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
    设在同一家复印店一次复印文件的页数为x(x为非负整数).
    (1)根据题意,填写下表:
    一次复印页数(页)
    5
    10
    20
    30

    甲复印店收费(元)
    0.5
     1 
    2
     3 

    乙复印店收费(元)
    0.6
     1.2 
    2.4
     3.3 

    (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
    【考点】FH:一次函数的应用.
    【分析】(1)根据收费标准,列代数式求得即可;
    (2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;
    (3)设y=y1﹣y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断.
    【解答】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;
    当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;
    故答案为1,3;1.2,3.3;

    (2)y1=0.1x(x≥0);
    y2=;

    (3)顾客在乙复印店复印花费少;
    当x>70时,y1=0.1x,y2=0.09x+0.6,
    ∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,
    设y=0.01x﹣0.6,
    由0.01>0,则y随x的增大而增大,
    当x=70时,y=0.1
    ∴x>70时,y>0.1,
    ∴y1>y2,
    ∴当x>70时,顾客在乙复印店复印花费少.
     
    24.将一个直角三角形纸片ABO放置在平面直角坐标系中,点,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
    (1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;
    (2)如图②,当P为AB中点时,求A'B的长;
    (3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).

    【考点】RB:几何变换综合题.
    【分析】(1)由点A和B的坐标得出OA=,OB=1,由折叠的性质得:OA'=OA=,由勾股定理求出A'B==,即可得出点A'的坐标为(,1);
    (2)由勾股定理求出AB==2,证出OB=OP=BP,得出△BOP是等边三角形,得出∠BOP=∠BPO=60°,求出∠OPA=120°,由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,证出OB∥PA',得出四边形OPA'B是平行四边形,即可得出A'B=OP=1;
    (3)分两种情况:①点A'在y轴上,由SSS证明△OPA'≌△OPA,得出∠A'OP=∠AOP=∠AOB=45°,得出点P在∠AOB的平分线上,由待定系数法求出直线AB的解析式为y=﹣x+1,即可得出点P的坐标;
    ②由折叠的性质得:∠A'=∠A=30°,OA'=OA,作出四边形OAPA'是菱形,得出PA=OA=,作PM⊥OA于M,由直角三角形的性质求出PM=PA=,把y=代入y=﹣x+1求出点P的纵坐标即可.
    【解答】解:(1)∵点,点B(0,1),
    ∴OA=,OB=1,
    由折叠的性质得:OA'=OA=,
    ∵A'B⊥OB,
    ∴∠A'BO=90°,
    在Rt△A'OB中,A'B==,
    ∴点A'的坐标为(,1);

    (2)在Rt△ABO中,OA=,OB=1,
    ∴AB==2,
    ∵P是AB的中点,
    ∴AP=BP=1,OP=AB=1,
    ∴OB=OP=BP
    ∴△BOP是等边三角形,
    ∴∠BOP=∠BPO=60°,
    ∴∠OPA=180°﹣∠BPO=120°,
    由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,
    ∴∠BOP+∠OPA'=180°,
    ∴OB∥PA',
    又∵OB=PA'=1,
    ∴四边形OPA'B是平行四边形,
    ∴A'B=OP=1;

    (3)设P(x,y),分两种情况:
    ①如图③所示:点A'在y轴上,
    在△OPA'和△OPA中,,
    ∴△OPA'≌△OPA(SSS),
    ∴∠A'OP=∠AOP=∠AOB=45°,
    ∴点P在∠AOB的平分线上,
    设直线AB的解析式为y=kx+b,
    把点,点B(0,1)代入得:,
    解得:,
    ∴直线AB的解析式为y=﹣x+1,
    ∵P(x,y),
    ∴x=﹣x+1,
    解得:x=,
    ∴P(,);
    ②如图④所示:
    由折叠的性质得:∠A'=∠A=30°,OA'=OA,
    ∵∠BPA'=30°,
    ∴∠A'=∠A=∠BPA',
    ∴OA'∥AP,PA'∥OA,
    ∴四边形OAPA'是菱形,
    ∴PA=OA=,作PM⊥OA于M,如图④所示:
    ∵∠A=30°,
    ∴PM=PA=,
    把y=代入y=﹣x+1得: =﹣x+1,
    解得:x=,
    ∴P(,);
    综上所述:当∠BPA'=30°时,点P的坐标为(,)或(,).


     
    25.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).
    (1)求该抛物线的解析式和顶点坐标;
    (2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.
    ①当点P'落在该抛物线上时,求m的值;
    ②当点P'落在第二象限内,P'A2取得最小值时,求m的值.
    【考点】HF:二次函数综合题.
    【分析】(1)把A点坐标代入抛物线解析式可求得b的值,则可求得抛物线解析式,进一步可求得其顶点坐标;
    (2)①由对称可表示出P′点的坐标,再由P和P′都在抛物线上,可得到关于m的方程,可求得m的值;②由点P′在第二象限,可求得t的取值范围,利用两点间距离公式可用t表示出P′A2,再由点P′在抛物线上,可用消去m,整理可得到关于t的二次函数,利用二次函数的性质可求得其取得最小值时t的值,则可求得m的值.
    【解答】解:
    (1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),
    ∴0=1﹣b﹣3,解得b=﹣2,
    ∴抛物线解析式为y=x2﹣2x﹣3,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线顶点坐标为(1,﹣4);

    (2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,
    ∵点P′与P关于原点对称,
    ∴P′(﹣m,﹣t),
    ∵点P′落在抛物线上,
    ∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,
    ∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=或m=﹣;
    ②由题意可知P′(﹣m,﹣t)在第二象限,
    ∴﹣m<0,﹣t>0,即m>0,t<0,
    ∵抛物线的顶点坐标为(1,﹣4),
    ∴﹣4≤t<0,
    ∵P在抛物线上,
    ∴t=m2﹣2m﹣3,
    ∴m2﹣2m=t+3,
    ∵A(﹣1,0),P′(﹣m,﹣t),
    ∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;
    ∴当t=﹣时,P′A2有最小值,
    ∴﹣=m2﹣2m﹣3,解得m=或m=,
    ∵m>0,
    ∴m=不合题意,舍去,
    ∴m的值为.
     

    相关试卷

    天津市中考数学试卷(含解析版):

    这是一份天津市中考数学试卷(含解析版),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年天津市中考数学试卷(含解析):

    这是一份2024年天津市中考数学试卷(含解析),共24页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    2021年天津市中考数学试卷-(解析版):

    这是一份2021年天津市中考数学试卷-(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map