搜索
    上传资料 赚现金
    英语朗读宝

    江苏省无锡市江阴市长泾片2022-2023学年下学期七年级期中数学试卷 (含答案)

    江苏省无锡市江阴市长泾片2022-2023学年下学期七年级期中数学试卷 (含答案)第1页
    江苏省无锡市江阴市长泾片2022-2023学年下学期七年级期中数学试卷 (含答案)第2页
    江苏省无锡市江阴市长泾片2022-2023学年下学期七年级期中数学试卷 (含答案)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市江阴市长泾片2022-2023学年下学期七年级期中数学试卷 (含答案)

    展开

    这是一份江苏省无锡市江阴市长泾片2022-2023学年下学期七年级期中数学试卷 (含答案),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年江苏省无锡市江阴市长泾片七年级(下)期中数学试卷学校:___________姓名:___________班级:___________考号:___________I卷(选择题)一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)1.  下列各组图形,可由一个图形平移得到另一个图形的是(    )A.  B.  C.  D. 2.  用一根小木棒与两根长分别为的小木棒组成三角形,则这根小木棒的长度可以为(    )A.  B.  C.  D. 3.  下列计算中,正确的是(    )A.  B.
    C.  D. 4.  下列计算中,能用平方差公式计算的是(    )A.  B.
    C.  D. 5.  一个多边形的每个外角都等于,则这个多边形的边数是(    )A.  B.  C.  D. 6.  小明将一块直角三角板摆放在直尺上,如图所示,则的关系是(    )
     
     A. 互余
    B. 互补
    C. 同位角
    D. 同旁内角7.  下列说法正确的是(    )A. 两条直线被第三条直线所截,同位角相等
    B. 若三条线段的长满足,则以为边一定能组成三角形
    C. 过一点有且只有一条直线与已知直线平行
    D. 三角形的三条高至少有一条在三角形内部8.  如图,的中线,的中线,于点,则面积是为(    )
    A.  B.  C.  D. 9.  如图,将甲图中阴影部分无重叠、无缝隙地拼成乙图,根据两个图形中阴影部分的面积关系得到的等式是(    )
    A.  B.
    C.  D. 10.  如图,中,点分别在边上,,点上,点的延长线上,,则度数为(    )
     A.  B.  C.  D. II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11.  已知某新型感冒病毒的直径约为米,将用科学记数法表示为______12.  一个等腰三角形的两边长分别为,则周长是______13.  如图所示,添加一个条件,使,则添加的条件为______
     14.  一个多边形的内角和是它的外角和的倍,则这个多边形的边数为          15.  是正整数,则的值为______16.  是一个完全平方式,那么的值是______ 17.  一副三角板按如图所示共定点叠放在一起,若固定三角板,改变三角板的位置其中点位置始终不变,当______时,
     18.  如图,在中,,点的中点,动点点出发,以每秒的速度沿运动若设点运动的时间是,那么当 ______ 时,的面积等于
     三、解答题(本大题共8小题,共66.0分。解答应写出文字说明,证明过程或演算步骤)19.  本小题
    计算题:

     20.  本小题
    把下面各式分解因式:

     21.  本小题
    先化简,再求值:,中22.  本小题
    如图,中,上一点,过点,上一点,连接
    求证:
    平分,求的度数.
    23.  本小题
    在正方形网格中,每个小正方形的边长均为个单位长度,的三个顶点的位置如图所示现将平移,使点变换为点,点分别是的对应点.
    请画出平移后的,并求的面积 ______
    若连接,则这两条线段之间的关系是______
    为方格纸上的格点异于点,若,则图中的格点共有______
    24.  本小题
    已知在中,上一点,且

    如图,求证:
    沿所在直线翻折,点落在边所在直线上,记为点
    如图,若,求的度数;
    ,则的度数为______ 用含的代数式表示25.  本小题
    在有理数范围内定义一种新运算,规定为常数,若

    ,试比较的大小;
    无论取何值,都成立,求此时的值.26.  本小题
    如图,已知在中,所在直线交于点,求的度数;
    的基础上,若每秒扩大,且在变化过程中始终保持是锐角,经过,在这两个角中,当一个为另一个的两倍时,的值;
    的基础上,的角平分线交于点是否为定值,如果是,请直接写出的值,如果不是,请写出是如何变化的.

    答案和解析 1.【答案】 【解析】解:、图形由轴对称所得到,不属于平移,故本选项不符合题意;
    B、图形平移前后的形状和大小没有变化,只是位置发生变化,符合平移性质,故本选项符合题意;
    C、图形由旋转所得到,不属于平移,故本选项不符合题意;
    D、图形大小不一,大小发生变化,不符合平移性质,故本选项不符合题意.
    故选:
    根据平移的基本性质,结合图形,对选项进行一一分析即可得到答案.
    本题考查的是平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.
     2.【答案】 【解析】【分析】
    本题主要考查了三角形三边关系,实际上就是根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可,难度适中.
    根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.
    【解答】
    解:设第三根木条长为,由三角形三边关系定理得,即
    的取值范围是,观察选项,只有选项D符合题意.
    故选:  3.【答案】 【解析】解:不是同类项,不能合并,故A错误,不符合题意;
    ,故B错误,不符合题意;
    ,故C错误,不符合题意;
    ,故D正确,符合题意;
    故选:
    根据合并同类项法则,单项式乘除法法则,积的乘方与幂的乘方法则逐项判断即可.
    本题考查整式的混合运算,解题的关键是掌握整式相关的运算法则.
     4.【答案】 【解析】解:可利用多项式乘多项式的乘法计算,
    选项A不符合题意;

    选项C不符合题意;

    选项C符合题意;
    可利用多项式乘多项式的乘法计算,
    选项D不符合题意;
    故选:
    利用平方差公式的特点,完全平方公式的特点对每个选项进行分析,即可得出答案.
    本题考查了平方差公式,完全平方公式,掌握平方差公式的特点,完全平方公式的特点是解决问题的关键.
     5.【答案】 【解析】解:
    故这个多边形的边数为
    故选:
    根据正多边形的边数等于除以每一个外角的度数列式计算即可得解.
    本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.
     6.【答案】 【解析】【分析】
    本题考查了平行线的性质,三角形内角和以及三角形外角的性质,灵活运用性质解决问题是解题的关键.
    利用三角形外角的性质并结合平行线的性质可得出答案.
    【解答】
    解:根据题意可得:




    互余,
    故选:  7.【答案】 【解析】解:两条直线平行,被第三条直线所截,同位角相等.
    故本选项不符合题意;
    B.若三条线段的长满足,则以为边一定能组成三角形,
    故本选项不符合题意;
    C.过直线外一点有且只有一条直线与已知直线平行.
    故本选项不符合题意;
    D.三角形的三条高至少有一条在三角形内部,
    故本选项符合题意;
    故选:
    根据平行线的判定定理、三角形的三边关系、平行线的性质、三角形的高的概念判断即可.
    本题主要考查了熟练平行线的判定定理、三角形的三边关系、平行线的性质、三角形的高的概念,掌握相关知识点是解题的关键.
     8.【答案】 【解析】解:

    的中线,


    同理可得,
    故选:
    先求得的面积,然后根据三角形的中线将三角形分成两个三角形得到,进一步得到
    本题涉及到三角形的面积公式,同时考查了三角形的中线将三角形分成两个三角形,它们的面积等于原三角形面积的一半的知识,难度适中.
     9.【答案】 【解析】解:图甲中阴影部分的面积为,图乙是边长为的正方形,因此面积为
    因此有
    故选:
    用代数式表示图甲、图乙中阴影部分的面积即可.
    本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的前提,用代数式表示图甲、图乙中阴影部分的面积是正确解答的关键.
     10.【答案】 【解析】解:设








    故选:
    可设,依次表示出,在中利用内角和即可求出结果.
    本题考查三角形顶角和定理,利用设元法表示出其中各个角度是解题关键.
     11.【答案】 【解析】解:将用科学记数法表示为
    故答案为:
    绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.
    本题考查用科学记数法表示较小的数,一般形式为,其中为由原数左边起第一个不为零的数字前面的的个数所决定.
     12.【答案】 【解析】解:等腰三角形的两边长分别为
    当腰长是时,则三角形的三边是不满足三角形的三边关系;
    当腰长是时,三角形的三边是,满足三角形的三边关系,三角形的周长是
    故答案为:
    根据等腰三角形的性质,本题要分情况讨论.当腰长为或是腰长为两种情况.
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
     13.【答案】答案不唯一 【解析】解:添加的条件为:答案不唯一

    同位角相等,两直线平行
    故答案为:答案不唯一
    根据平行线的判定定理求解即可.
    此题考查了平行线的判定与性质,熟记平行线的判定定理是解题的关键.
     14.【答案】 【解析】【分析】
    本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.
    根据多边形的内角和定理,多边形的内角和等于,外角和等于,然后列方程求解即可.
    【解答】
    解:设多边形的边数是,根据题意得,

    解得
    所以这个多边形为八边形.
    故答案为八.  15.【答案】 【解析】解:




    故答案为:
    根据幂的乘方与积的乘方的法则进行计算,即可得出答案.
    本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.
     16.【答案】 【解析】解:


    故答案为:
    根据完全平方式的特点解答即可.
    本题考查了完全平方式,掌握是解题的关键,不要漏解.
     17.【答案】 【解析】【分析】
    本题主要考查平行线的判定,解答的关键是分两种情况进行讨论.
    分两种情况进行讨论:时;时,利用平行线的判定条件即可求解.
    【解答】
    解:由题意得
    如图,

    时,可得
    如图,

    时,可得

    故答案为  18.【答案】 【解析】解:,点的中点,

    当点在线段上,如图所示,



    解得:
    当点在线段上,如图所示,


    解得:
    故答案为:
    分点在线段上和点在线段上两种情况考虑,根据三角形的面积公式分别列出关于的一元一次方程,解之即可得出结论.
    本题考查了直角三角形的性质的运用,三角形的面积公式的运用,以及解一元一次方程,和分类讨论的数学思想,解答时灵活运用三角形的面积公式求解是关键.
     19.【答案】解:




     【解析】利用负整数指数幂、零指数幂运算法则、有理数的加减混合运算法则计算;
    利用幂的乘方与积的乘方、同底数幂的除法、单项式乘单项式、合并同类项计算.
    本题考查了实数的运算和整式的运算,解题的关键是掌握负整数指数幂、零指数幂运算法则、有理数的加减混合运算法则、幂的乘方与积的乘方、同底数幂的除法、单项式乘单项式、合并同类项.
     20.【答案】解:




     【解析】利用提公因式法分解;
    先提取公因式,再利用完全平方公式分解.
    本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.
     21.【答案】解:原式

    时,
    原式
     【解析】直接利用乘法公式化简,再合并同类项,再代入数据得出答案.
    此题主要考查了整式的混合运算化简求值,正确掌握乘法公式是解题关键.
     22.【答案】解:证明:






    平分

    中,


    答:的度数为 【解析】根据,得出,又因为,等量代换得,最后根据同位角相等,两直线平行即可证明;
    根据,得出,再根据平分,得出,最后在中利用三角形内角和等于即可求解.
    本题考查了平行线的性质和判定,解题的关键是掌握题中各角之间的位置关系和数量关系.
     23.【答案】  平行且相等   【解析】解:如图所示,即为所求,

    的面积为
    由平移的性质知这两条线段之间的关系是平行且相等,
    故答案为:平行且相等;
    如图所示,点即为所求,共有个,
    故答案为:
    分别作出三个顶点的对应点,再首尾顺次连接即可;
    根据平移变换的性质可得答案;
    根据网格及三角形的面积求解即可.
    本题主要考查作图平移变换,解题的关键是掌握平移变换的定义与性质.
     24.【答案】 【解析】证明:





    解:


    由题意得:



    时,在线段上,

    时,的延长线上,

    时,
    时,
    故答案为:
    ,得到,又,因此即可求出,从而证明
    由直角三角形的性质求出,而,即可求出
    分两种情况,由直角三角形的性质即可求解.
    本题考查直角三角形的性质,关键是要分情况讨论.
     25.【答案】解:根据题意可知:


    解得:








    根据题意知:



    时,无论取何值,都成立,
    解得:

    解得: 【解析】先求出的值,再代入公式求解即可;
    利用公式分别求出,再利用求差法比大小;
    利用公式把式子进行化简,合并同类项,含的项系数为零,求出的值,再代入化简好的式子中求解即可.
    本题考查了新定义运算、整式混合运算、整式的化简求值、平方差公式和完全平方公式等知识,正确运用新定义运算公式化简是解决本题的关键.
     26.【答案】解:




    由题意
    时,,则有
    解得
    时,

    解得
    综上所述,当时,两个角中,一个角是另一个角的两倍.

    如图,结论是定值.

    理由:



    平分平分




    是定值. 【解析】利用钝角的余角相等,证明即可解决问题.
    由题意分两种情形:时,时,,分别构建方程求解即可.
    如图,结论是定值.想办法证明即可解决问题.
    本题属于几何变换综合题,考查了三角形内角和定理,等角的余角相等,直角三角形两锐角互余等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.
     
     

    相关试卷

    2023-2024学年江苏省无锡市江阴市长泾片七年级(上)期中数学试卷(含解析):

    这是一份2023-2024学年江苏省无锡市江阴市长泾片七年级(上)期中数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省无锡市江阴市长泾片七年级(下)期中数学试卷-(含解析):

    这是一份2022-2023学年江苏省无锡市江阴市长泾片七年级(下)期中数学试卷-(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省无锡市江阴市长泾片2022-2023学年七年级下学期期中数学试卷 (含答案):

    这是一份江苏省无锡市江阴市长泾片2022-2023学年七年级下学期期中数学试卷 (含答案),共20页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map