2023年贵州省遵义市中考模拟数学试卷(含答案)
展开
这是一份2023年贵州省遵义市中考模拟数学试卷(含答案),共7页。试卷主要包含了故选B等内容,欢迎下载使用。
2022-2023学年度中考模拟考试数学试题卷 (全卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1. 数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是( )A.4 B.﹣4或10 C.﹣10 D.4或﹣10 下列图形中,是轴对称图形的是( ) 某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是( )A. 0.36×106 B. 3.6×105 C. 3.6×106 D. 36×1054. 下列运算,结果正确的是( )A. B. C. D.5. 如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是( )A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB6. 若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为( )A.12 B.10 C.4 D.﹣4在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是( )A.5 B.10 C.12 D.15 古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为( )A.10﹣4 B.35 C. D.20﹣8 如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为( )A. B. C. D. 世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是( )A.﹣=45 B.﹣=45 C.﹣=45 D.﹣=4511. 如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是( )A. B.3 C.3 D.412. 如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b; ④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是( )A.4个 B.3个 C.2个 D.1个二.填空题(本大题共8小题,每小题4分,共24分。答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上)13. 设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= .14. 如图,在扇形中,平分交狐于点.点为半径上一动点若,则阴影部分周长的最小值为__________. 如图,动点在边长为2的正方形内,且,是边上的一个动点,是边的中点,则线段的最小值为__________.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为___________.三.解答题(本题共9小题,共98分,解答时应写出必要的文字说明、证明过程或演算步骤). (6分)先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值. (8分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.19. (10分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径. (12分)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为____;(4)某班有4名优秀的同学(分别记为E,F,G,H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.21. (12分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.(12分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道上架设测角仪,先在点处测得观星台最高点的仰角为,然后沿方向前进到达点处,测得点的仰角为.测角仪的高度为,求观星台最高点距离地面的高度(结果精确到.参考数据: );“景点简介”显示,观星台的高度为,请计算本次测量结果的误差,并提出一条减小误差的合理化建议. (12分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.24. (12分)如图,在平面直角坐标系中,已知抛物线与轴交于),两点,与轴交于点,连接.(1)求该抛物线的解析式,并写出它的对称轴;(2)点为抛物线对称轴上一点,连接,若,求点的坐标;(3)已知,若是抛物线上一个动点(其中),连接,求面积的最大值及此时点的坐标.(4)若点为抛物线对称轴上一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.25. (14分)问题提出:(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 .问题探究:(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决:(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积. 2022-2023学年度中考模拟考试数学试题卷答案一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.【解析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B表示的数是多少即可.点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选B. 【解析】观察图形,选项D中图形是轴对称图形,有3条对称轴,其他图形都不是轴对称图形.故选D. 【解析】故选D.4.【解析】A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项计算正确;故选:D.5.【解析】∵AD为直径,∴∠ACD=90°,∵四边形OBCD为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD中,sinA==,∴∠A=30°,在Rt△AOP中,AP=OP,所以A选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C选项的结论正确;∴AP=CP,∴OP为△ACD的中位线,∴CD=2OP,所以B选项的结论正确;∴OB=2OP,∴AC平分OB,所以D选项的结论正确.故选A.6.【解析】∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12 故选:A.7.【解析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.设袋子中红球有x个,根据题意,得:0.25,解得x=5,经检验:x=5是分式方程的解,∴袋子中红球的个数最有可能是5个. 故选:A.8.【解析】作AH⊥BC于H,如图,∵AB=AC,∴BH=CHBC=2,在Rt△ABH中,AH,∵D,E是边BC的两个“黄金分割”点,∴BEBC=2(1)=22,∴HE=BE﹣BH=22﹣2=24,∴DE=2HE=48∴S△ADE(48)10﹣4.故选:A.9.【详解】∵四边形ABCD是矩形,,,,,,,,,又,,,,,,,同理可证,,,,,,故选:C.10.【解析】由实际问题抽象出分式方程直接利用5G网络比4G网络快45秒得出等式进而得出答案.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:﹣=45.11.【解析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OFBCDF,从而求得BC=DF=2,利用勾股定理即可求得AC.连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OFBC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中 ∴△EFD≌△ECB(AAS),∴DF=BC,∴OFDF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC4,12.【解析】解:由图象可知:a<0,c>0, ,∴b=2a<0,∴abc>0,故①abc<0错误;当x=1时,y=a+b+c=a+2a+c=3a+c<0,∴3a<﹣c,故②3a<﹣c正确;∵x=﹣1时,y有最大值,∴a﹣b+c≥am2+bm+c(m为任意实数),即a﹣b≥am2+bm,即a﹣bm≥am2+b,故③错误;∵二次函数y=ax2+bx+c(a≠0)图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),∴二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2),∵抛物线的对称轴为直线x=﹣1,∴二次函数y=ax2+bx+c与直线y=﹣2的另一个交点为(1,﹣2),即x1=1,x2=﹣3,∴2x1﹣x2=2﹣(﹣3)=5,故④正确.所以正确的是②④;故选:C. 二.填空题(本大题共8小题,每小题4分,共24分。答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上)13.【解析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.直接根据根与系数的关系求解.∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.14.【详解】解: 最短,则最短,如图,作扇形关于对称的扇形 连接交于,则 此时点满足最短,平分 而的长为: 最短为 故答案为:15.【详解】解答:解:作点E关于DC的对称点E,设AB的中点为点O,连接OE,交DC于点P,连接PE,如图:
∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,
∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,
∵点E与点E关于DC对称,∴DE=DE=1,PE=PE,∴AE=AD+DE=2+1=3,
在Rt△AOE中,OE===,∴线段PE+PM的最小值为:
PE+PM=PE+PM=ME=OE−OM=−1.16.【解析】如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FMAN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM,∴•ON•AN•OM•FM,∴ONOM,∴ON=MN=EM,∴MEOE,∴S△FMES△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE∥BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOFS△AOE=9,∴S△FMES△EOF=3,∴S△FOM=S△FOE﹣S△FME=9﹣3=6,∴k=12.三.解答题(本题共9小题,共98分,解答时应写出必要的文字说明、证明过程或演算步骤).17.【解析】解:原式=×= = ==﹣(x-3)=﹣x+3∵x≠ ±2,∴可取x=1,则原式=﹣1+3=2. 【解析】根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1 【解析】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.20.【详解】(1)∵条形统计图知B级的频数为12,扇形统计图中B级的百分比为30%,∴12÷30%=40(名);(2)∵A组的频数为6,∴A级的扇形圆心角α的度数为:×360°=54°.∵C级频数为:40-6-12-8=14(人),据此补条形图;(3)该校八年级学生中成绩为优秀的有:(4)画树状图得∵共有12种等可能的结果,选中小明的有6种情况,∴选中小明的概率为=21.【解析】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,, ∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°, ∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.22.【详解】解:(1)如图,过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,设AD的长为xm,∵AE⊥ME,BC∥MN,∴AD⊥BD,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm,BD=BC+CD=(16+x)m,由题易得,四边形BMNC为矩形,∵AE⊥ME,∴四边形CNED为矩形,∴DE=CN=BM=,在Rt△ABD中,,解得:,即AD=10.7m,AE=AD+DE=10.7+1.6=12.3m,答:观星台最高点距离地面的高度为12.3m.(2)本次测量结果的误差为:12.6-12.3=0.3m,减小误差的合理化建议:多次测量,求平均值.23.【解析】解:(1)根据题意得,,故y与x的函数关系式为;(2)根据题意得,,解得:,(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,,,∴当时,w随x的增大而增大,当时,,答:当x为12时,日销售利润最大,最大利润960元.24.【解析】解:(1)将点代入,可得,;对称轴;(2)如图1:过点作轴于,作轴于,设点,,在中,,在中,,在中,,,; (3)如图2:过点作轴于点,过点作直线轴于,过点作于,,四边形是矩形,,,,当时,面积有最大值是,此时;(4)存在点使得以为顶点的四边形是平行四边形,设,①四边形是平行四边形时,②四边形时平行四边形时,,;③四边形时平行四边形时,,,;综上所述:或或;25.【解析】(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BFCF,∵PB=PF+BF,∴PB=CF+BF,即:4CFCF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),在Rt△ACB中,AC=BCAB70=35,∴S△ACBAC2(35)2=1225,∴y=S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B50,∵S△A′PBA′B•PFPB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.
相关试卷
这是一份贵州省遵义市2022年中考数学试卷【含答案】,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份贵州省遵义市2019年中考数学试卷【含答案】,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份贵州省遵义市2018年中考数学试卷【含答案】,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。