天津高考化学三年(2020-2022)模拟题分类汇编-24化学反应的热效应(2)
展开天津高考化学三年(2020-2022)模拟题分类汇编-24化学反应的热效应(2)
一、单选题
1.(2022·天津南开·统考二模)1,3-丁二烯和Br2以物质的量之比为1∶1发生加成反应分两步: 第一步Br+进攻1,3-丁二烯生成中间体C(溴鎓正离子);第二步Br−进攻中间体C完成1,2-加成或1,4-加成。反应过程中的能量变化如下图所示,下列说法正确的是
A.1,2-加成产物A比1,4-加成产物B稳定
B.第一步的反应速率比第二步慢
C.该加成反应的反应热为Eb–Ea
D.升高温度,1,3-丁二烯的平衡转化率增大
2.(2022·天津和平·统考三模)多相催化反应是在催化剂表面通过吸附、解吸过程进行的。我国学者发现T℃时(各物质均为气态),甲醇与水在铜催化剂上的反应机理和能量变化如图。
下列说法正确的是
A.反应过程只有C-H键断开
B.反应I的活化能为
C.总反应的热化学方程式为:
D.反应历程中,反应Ⅱ决定整个反应进程的快慢
3.(2021·天津河东·统考一模)下列发电厂、电站的电能由化学能直接转化而成的是
A.水力发电站 B.地热发电厂 C.风力发电厂 D.燃料电池发电站
4.(2021·天津河北·统考一模)据报道,我国科学家研制出以石墨烯为载体的催化剂,在25℃下用H2O2直接将CH4转化为含氧有机物,其主要原理如图所示:
下列说法不正确的是
A.图中代表H2O2
B.步骤i、ii的总反应方程式是
C.由图可知,步骤iv生成的H2O,其中的H原子全部来自H2O2
D.根据以上原理,推测步骤vi生成HCOOH和H2O
5.(2021·天津·一模)下列科学家与其贡献匹配错误的是
A.侯德榜——联合制碱 B.盖斯——平衡移动原理
C.徐光宪——稀土元素分离及应用 D.门捷列夫——元素周期表
6.(2021·天津北辰·统考一模)如图是CH4与Cl2生成CH3Cl的部分反应过程中各物质物质的能量变化关系图(Ea表示活化能),下列说法错误的是
A.增大Cl2的浓度,可提高反应速率,但不影响ΔH的大小
B.第一步反应的速率小于第二步反应
C.总反应为放热反应
D.升高温度,Ea1、Ea2均增大,反应速率加快
7.(2021·天津·一模)正戊烷异构化为异戊烷是油品升级的一项重要技术。在合适催化剂和一定压强下,正戊烷的平衡转化率(a)随温度变化如图所示。
名称
熔点/℃
沸点/℃
燃烧热ΔH/kJ·mol-1
正戊烷
-130
36
-3506.1
异戊烷
-159.4
27.8
-3504.1
下列说法不正确的是
A.正戊烷异构化为异戊烷反应的ΔH<0
B.28~36℃时,随温度升高,正戊烷的平衡转化率增大,原因是异戊烷气化离开体系,产物浓度降低,平衡正向移动
C.寻找更好的催化剂可使正戊烷异构化为异戊烷的转化率大大提升
D.150℃时,体系压强从100kPa升高到500kPa,正戊烷的平衡转化率基本不变
8.(2021·天津·一模)CO与N2O在Fe+作用下发生反应的能量变化及反应历程如图所示,两步为①N2O+Fe+=N2+FeO+(慢)、②FeO++CO=CO2+Fe+(快)。下列说法正确的是
A.分子构型:CO2为直线型,N2O为V形(已知N2O中每个原子都满足8电子稳定结构)
B.反应①的活化能比反应②大
C.反应中每转移1mol电子,生成N2体积为11.2L
D.两步反应均为放热反应,总反应的化学反应速率由反应②决定
9.(2021·天津·统考二模)与在铁催化剂表面进行如下两步反应,其相对能量与反应历程如图所示。
第一步:
第二步:
下列叙述错误的是
A.使反应的活化能减小 B.两步反应均为放热反应
C.总反应为 D.第一步反应比第二步反应快
10.(2021·天津红桥·统考二模)2020年12月17日凌晨,中国探月工程完成收官之战,“嫦娥五号”月球探测器携带月壤等样本成功返回地球。下列有关说法不正确的是
A.发射时使用液氢和液氧作推进剂,是利用燃烧反应提供能量的原理
B.“嫦娥五号”探测器使用的太阳能电池帆板其主要成分是Si
C.月壤中含有珍贵的,与互为同分异构体
D.留在月球的国旗长时间不褪色、不分解,是利用了合成纤维材料性质的稳定性
11.(2021·天津南开·统考二模)二氧化碳捕获技术可用于去除气流中的二氧化碳或者分离出二氧化碳作为气体产物,其中催化合成甲酸是一种很有前景的方法,且生成的甲酸是重要化工原料,该反应在无催化剂和有催化剂时的能量变化如图所示:
下列说法正确的是
A.由图可知,过程I是有催化剂的能量变化曲线
B.催化合成甲酸的热化学方程式为
C.该反应的原子利用率为100%,符合绿色化学的理念
D.该反应可用于的吸收和转化,有助于缓解酸雨的形成
二、填空题
12.(2021·天津·模拟预测)氮的化合物种类繁多,性质也各不相同。请回答下列问题:
(1)已知:
①SO3(g)+NO(g)=NO2(g)+SO2(g) ∆H1=+41.8kJ·mol-1
②2SO2(g)+O2(g)=2SO3(g) ∆H2=-196.6kJ·mol-1
则2NO2(g)=2NO(g)+O2(g)的∆H=_______。
(2)NO作为主要空气污染物,其主要来源是汽车尾气,研究人员用活性炭对汽车尾气中的NO进行吸附,并发生反应:C(s)+2NO(g)⇌N2(g)+CO2(g) ∆H<0.在恒压密闭容器中加入足量活性炭和一定量NO气体,反应相同时间时,测得NO的转化率α(NO)随温度的变化如图所示:
图中a、b、c三点中,达到平衡的点是_______;温度为1100K时,N2的平衡体积分数为_______。
(3)现代技术用氨气将汽车尾气中的NOx还原为N2和H2O,反应原理是NO(g)+NO2(g)+2NH3(g)3H2O(g)+2N2(g) ∆H<0。
①实际生产中NO(g)+NO2(g)+2NH3(g)3H2O(g)+2N2(g)的反应温度不宜过高的原因是_______。
②500℃时,在2L恒容密闭容器中充入1molNO、1molNO2和2molNH3,8min时反应达到平衡,此时NH3的转化率为40%,体系压强为p0MPa,则0~8min内用N2表示的平均反应速率v(N2)=_______mol·L-1·min-1,500℃时该反应的平衡常数Kp=_______MPa(用含p0的代数式表示,Kp为以分压表示的平衡常数,分压=总压×物质的量分数)。
三、原理综合题
13.(2022·天津·模拟预测)以为主要成分的雾霾的综合治理是当前重要的研究课题。汽车尾气中的和在一定条件下可发生反应生成无毒的和:
(1)已知:①
②的燃烧热,
则反应③___________。
(2)若在恒容的密闭容器中,充入和,发生反应③,下列选项中能说明该反应已经达到平衡状态的是___________。
A.和的物质的量之比不变 B.混合气体的密度保持不变
C.容器中混合气体的平均摩尔质量不变 D.
(3)某研究小组在三个容积为的恒容密闭容器中,分别充入和,发生反应③。在三种不同实验条件下进行上述反应(体系各自保持温度不变),反应体系总压强随时间的变化如图所示:
①温度:___________(填“<”“=”或“”)。
②的平衡转化率:Ⅰ___________Ⅱ___________Ⅲ(填“<”“=”或“”)。
③反应速率:a点的v逆___________b点的v正(填“<”“=”或“”)。
(4)将和以一定的流速通过两种不同的催化剂进行反应,相同时间内测量的脱氮率(脱氮率即的转化率)如图所示。M点___________(填“是”或“不是”)对应温度下的平衡脱氮率,说明理由___________。
14.(2022·天津·模拟预测)运用化学反应原理研究碳、氮、硫的单质及其化合物的反应对缓解环境污染、能源危机具有重要意义。
I.氨为重要的化工原料,有广泛用途。
(1)合成氨中的氢气可由下列反应制取:
a.CH4(g)+H2O(g) CO(g)+3H2(g) ∆H1=+216.4kJ/mol
b.CO(g)+H2O(g) CO2(g)+H2(g) ∆H2=–41.2kJ/mol
则反应CH4(g)+2H2O(g) CO2(g)+4H2(g)∆H=__。
(2)起始时投入氮气和氢气的物质的量分别为1mol、3mol,在不同温度和压强下合成氨。平衡时混合物中氨的体积分数与温度的关系如图。
①恒压时,反应一定达到平衡状态的标志是__(填序号)。
A.N2和H2的转化率相等
B.反应体系密度保持不变
C.保持不变
D.=2
②P1__P2(填“>”“<”“=”或“不确定”,下同);反应的平衡常数:B点__D点。
③C点H2的转化率为__;在A、B两点条件下,该反应从开始到平衡时生成氮气的平均速率:v(A)___v(B)。
Ⅱ.用间接电化学法去除烟气中NO的原理如图所示。
(3)已知阴极室溶液呈酸性,则阴极的电极反应式为__。反应过程中通过质子交换膜(ab)的H+为2mol时,吸收柱中生成的气体在标准状况下的体积为__L。
15.(2022·天津·模拟预测)丙烷在燃烧时放出大量的热,它也是液化石油气的主要成分,作为能源应用于人们的日常生产和生活。
已知: 2C3H8(g)+7O2(g)=6CO(g)+8H2O(1) △H1 =-2741.8 kJ•mol-1
2CO(g)+O2(g)=2CO2(g) △H2=-566.0 kJ•mol-1
(1)反应C3H8 (g)+5O2(g)=3CO2(g)+4H2O(l) △H=____________;
(2)现有1molC3H8在不足量的氧气里燃烧,生成1molCO和2molCO2以及气态水,将所有的产物通入一个固定体积为1L的密闭容器中,在一定条件下发生如下可逆反应:CO(g)+H2O(g)⇌CO2(g)+H2(g) △H=+41.2kJ•mol-1
①下列事实能说明该反应达到平衡的是_____________;
a.体系中的压强不再变化 b.v正( H2) = v逆( CO ) c.混合气体的平均相对分子质量不再变化 d.CO2 的浓度不再发生变化
②5min 后体系达到平衡,经测定,容器中含 0.8 mol H2,则平衡常数K =______;
③其他条件不变,向平衡体系中充入少量CO,则平衡常数K______(填“增大”、“减小”或“不变”)
(3)根据(1)中的反应可以设计一种新型燃料电池,一极通入空气,另一极通入丙烷气体 ;燃料电池内部是熔融的掺杂着氧化钆(Y2O3)的氧化锆(ZrO2)晶体,在其内部可以传导O2-,在电池内部O2-向______极移动(填“正”或“负”);电池的负极电极反应为________。
(4)用上述燃料电池和惰性电极电解足量Mg(NO3)2和NaCl的混合溶液,电解开始后阴极附近的现象为___________。
16.(2022·天津·模拟预测)工业炼铁过程中涉及到的主要反应有:
i.C(s)+O2(g)=CO2(g)△H1=-393kJ/mol
ii.C(s)+CO2(g)=2CO(g)△H2=+172kJ/mol
iii.Fe2O3(s)+3CO(g)2Fe(s)+3CO2(g)△H3
iv.2Fe2O3(s)+3C(s)4Fe(s)+3CO2(g)△H4=+460kJ/mol
回答下列问题:
(1)反应iv_________(填“能”或“不能”)在任何温度下自发进行。
(2)△H3=_________kJ/mol。
(3)T1时,向容积为10L的恒容密闭容器中加入3molFe2O3和3molCO发生反应iii,5min时达到平衡,平衡时测得混合气体中CO2的体积分数为80%。
①0~5min内反应的平均速率v(CO2)=_________mol•L-l•min-l。
②该温度下反应的平衡常数为_________。
③若将平衡后的混合气体通入1L3.6mol/L的NaOH溶液,恰好完全反应,反应的离子方程式为_________,所得溶液中离子浓度由大到小的顺序是_________
④下列选项中能够说明该反应已经达到平衡状态的是_________(填序号)。
a.Fe2O3的物质的量不再变化
b.体系的压强保持不变
c.混合气体的平均摩尔质量保持不变
d.单位时间内消耗CO和生成CO2的物质的量相等
(4)一定条件下进行反应iii,正向反应速率与时间的关系如图所示,t2时刻改变了一个外界条件,可能是_________。
.
17.(2021·天津红桥·统考一模)H2是一种清洁能源也是一种重要的化工原料,工业上常利用CO和H2合成可再生能源甲醇。
(1)已知:2CO(g)+O2(g)=2CO2(g) △H1=-566.0kJ·mol-1
2CH3OH(1)+3O2(g)=2CO2(g)+4H2O(l) △H2=-1453kJ·mol-1
则CH3OH(l)不完全燃烧生成CO(g)和H2O(l)的热化学方程式为___________。
(2)利用反应CO2(g)+H2(g)⇌CO(g)+H2O(g) △H,可获得化工原料CO,CO2的平衡转化率与温度的关系如图1。
①△H___________(填“>”、“<”或“=”)0。
②240℃时,将2molCO2和2molH2通入容积为8L的恒容密闭容器中,达到平衡时CO2的转化率为50%。此时该反应的平衡常数K=___________。
③该反应在一恒容密闭容器中进行,反应过程如图2,t1时达到平衡,t2时仅改变一个条件,该条件是___________。
(3)300℃时,向一体积为10L的恒容密闭容器中充入1.32molCH3OH和1.2molH2O,发生反应:CH3OH(g)+H2O(g)⇌CO2(g)+3H2(g) △H1=+49kJ·mol-1。
①高温下,CH3OH(g)+H2O(g)⇌CO2(g)+3H2(g)能自发进行的原因是___________。
②反应经5min达到平衡,测得H2的物质的量为2.97mol。0~5min内,H2的反应速率为______。
③CH3OH(g)与H2O(g)反应相对于电解水制备H2的优点是___________。
18.(2021·天津·模拟预测)含氮化合物是化工、能源、环保等领域的研究热点。
(1)图1所示为利用H2O和空气中的N2以LDH超薄纳米为催化剂在光催化作用下合成氨的原理。
已知:I.2NH3(g)N2(g)+3H2(g) △H=+92.4kJ•mol-1;
Ⅱ.2H2(g)+O2(g)=2H2O(g) △H=-483.6kJ•mol-1。
则上述合成氨的热化学方程式为___。
(2)合成尿素[CO(NH2)2]的反应为2NH3(g)+CO2(g)H2O(l)+CO(NH2)2(s) △H=-134kJ•mol-1。向恒容密闭容器中按物质的量之比4:1充入NH3和CO2,使反应进行,保持温度不变,测得CO2的转化率随时间的变化情况如图2所示。
①若用CO2的浓度变化表示反应速率,则A点的逆反应速率___B点的正反应速率(填“>”“<”或“=”)。
②下列叙述中不能说明该反应达到平衡状态的是___(填选项字母)。
A.体系压强不再变化 B.气体平均摩尔质量不再变化
B.NH3的消耗速率和CO2的消耗速率之比为2:1 D.固体质量不再发生变化
(3)汽车尾气已成为许多大城市空气的主要污染源,其中存在大量NO。实验发现,NO易发生二聚反应2NO(g)N2O2(g)并快速达到平衡。向真空钢瓶中充入一定量的NO进行反应,测得温度分别为T1和T2时NO的转化率随时间变化的结果如图3所示。
①温度为T2时,达到平衡时体系的总压强为200kPa,X点N2O2的物质的量分数为___(保留三位有效数字),X点对应的压力平衡常数Kp=___kPa-1(用分压表示,气体的分压=气体的物质的量分数×总压,保留小数点后三位);
②提高NO平衡转化率的条件为___(任写两点)。
19.(2021·天津·模拟预测)氮和氮的化合物在国防建设、工农业生产和生活中都有极其广泛的用途。请回答下列与氮元素有关的问题:
(1)已知部分化学键的键能如表
化学键
N≡N
H —H
N—H
键能/(kJ·mol-1)
946
436
391
工业上合成氨反应当过程中转移3 mol电子时,理论上热量变化为 ___________kJ。
(2)在一个恒容密闭容器中充入2 mol NO(g)和1 mol Cl2(g)发生反应:2NO(g)+Cl2(g) 2ClNO(g) 在一定温度下测得NO的物质的量(单位:mol)与时间的关系如表所示:
t/min
0
5
8
13
NO的物质的量
2
1.15
1.0
1.0
①测得该反应平衡常数与温度关系为1gKp=5.08+ ,则该反应是___________(填“吸热”或“放热”反应)。
②同温度下,起始时容器内的压强为P0,则该反应的平衡常数KP=___________(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
③若同温度下,在相同容器中,充入1 mol NO(g)和0.5 molCl2(g),则NO的平衡转化率___________50%(填“大于”、“等于”或“小于”)。
(3)某研究小组将2 mol NH3、3 mol NO和一定量的O2充入2 L密闭容器中,在Ag2O催化剂表面发生反应4NH3(g)+6NO(g)5N2(g)+6H2O(l);NO的转化率随温度变化的情况如图。5 min内,温度从420 K升高到580 K,此时段内NO的平均反应速率v(NO)___________,420 K之前,NO生成N2的转化率偏低的原因可能是___________。
(4)若将NO2与O2通入如图所示甲装置,D电极上有红色物质析出,A电极的电极反应式为___________。
20.(2021·天津·二模)氮的化合物在生产实践及科学研究中应用广泛
(1)目前工业上使用的捕碳剂有NH3和(NH4)2CO3,它们与CO2可发生如下可逆反应:
2NH3(1)+H2O(1)+CO2(g)⇌(NH4)2CO3(aq)K1
NH3(l)+H2O(1)+CO2(g)⇌NH4HCO3(aq)K2
(NH4)2CO3(aq)+H2O(1)+CO2(g)⇌2NH4HCO3(aq)K3
则K3=___(用含K1、K2的代数式表示)。
(2)利用CO2制备乙烯是我国能源领域的一个重要战略方向,具体如下:CO2催化加氢合成乙烯,其反应为:2CO2(g)+6H2(g)⇌C2H4(g)+4H2O(g);ΔH=akJ·mol-1。起始时按n(CO2):n(H2)=1:3的投料比充入20L的恒容密闭容器中,不同温度下平衡时H2和H2O的物质的量如图甲所示:
①a___0(选填“>”或“<”)。
②下列说法正确的是___(填字母序号)。
A.使用催化剂,可降低反应活化能,加快反应速率
B.其它条件不变时,若扩大容器容积,则v正减小,v逆增大
C.测得容器内混合气体密度不随时间改变时,说明反应已达平衡
③393K下,该反应达到平衡后,再向容器中按n(CO2):n(H2)=1:3投入CO2和H2,则将___(填“变大”、“不变”或“变小”)。
(3)N2H4为二元弱碱,在水中的电离方程式与氨相似,常温下,向10mL0.1mol/L的联氨溶液中,滴加0.1mol/L的HCl溶液xmL溶液中N2H4、N2H、N2H的物质的量分数δ随溶液pOH[pOH=-lgc(OH-)]变化的曲线如图所示。
①25℃时,写出N2H4在水中第一步电离方程式___。
②25℃时,N2H4在水中的第二步电离常数值为___。
③工业上利用NH3制备联氨(N2H4)装置如图,试写出其阳极电极反应式:___。
21.(2021·天津·三模)我国在碳—1化学方面的进展主要集中在合成气化工和甲醇化工。
I.研究CO2与CH4反应使之转化为CO和H2(合成气),可减缓燃料危机和减弱温室效应,过程包括
反应a:CH4(g)+CO2(g)2CO(g)+2H2(g)△H1>0
反应b:H2(g)+CO2(g)H2O(g)+CO(g)△H2>0
(1)反应a在一定条件下能够自发进行的原因是___;该反应工业生产适宜的温度和压强为___(填标号)。
A.高温高压 B.高温低压 C.低温高压 D.低温低压
(2)工业上将CH4与CO2按物质的量1:1投料制取CO和H2时,CH4和CO2平衡转化率随温度变化关系如图所示。
①923K时CO2的平衡转化率大于CH4的原因是___。
②计算923K时反应b的化学平衡常数K=____(计算结果保留小数点后两位)。
II.CO2催化加氢制甲醇:在1.0L恒容密闭容器中投入1molCO2和2.75molH2发生反应:CO2(g)+3H2(g)CH3OH(g)+H2O(g),实验测得不同温度及压强下,平衡时甲醇的物质的量变化如图2所示。
(3)下列说法正确的是___。
A.该反应的正反应为放热反应
B.压强大小关系为P1
D.在P2及512K时,图中N点v(正)
(4)H2CO3电离常数为:Ka1=4×10-7,Ka2=4×10-11。已知0.1mol/LNH4HCO3溶液的pH=8,则在此溶液中:
①下列有关离子浓度的关系式中,不正确的是___(填序号)。
A.c(NH)+c(NH3·H2O)+c(H+)=c(HCO)+c(CO)+c(H2CO3)+c(OH-)
B.c(NH)+c(NH3·H2O)=c(HCO)+c(H2CO3)
C.c(H2CO3)-c(CO)-c(NH3·H2O)=9.9×10-7mol·L-1
D.等体积等物质的量浓度NH4HCO3与NaCl溶液混合析出晶体,静置上层清液存在:c(H+)+c(NH)>c(OH-)+c(HCO)+2c(CO)
②c(H2CO3):c(CO)=___(结果保留三位有效数字)。
22.(2021·天津·一模)碳的化合物在工业上应用广泛,下面对几种碳的化合物的具体应用进行分析对“碳中和”具有重要意义。
(1)已知下列热化学方程式:
i.CH2=CHCH3(g)+Cl2(g)→CH2ClCHClCH3(g) ΔH1=-133kJ·mol-1
ii.CH2=CHCH3(g)+Cl2(g)→CH2=CHCH2Cl(g)+HCl(g) ΔH2=-100kJ·mol-1
又已知在相同条件下,CH2=CHCH2Cl(g)+HCl(g)CH2ClCHClCH3(g)的正反应的活化能Ea(正)为132kJ·mol-1,则逆反应的活化能Ea(逆)为___kJ·mol-1。
(2)查阅资料得知,反应CH3CHO(aq)=CH4(g)+CO(g)在含有少量I2的溶液中分两步进行:
第①步反应为CH3CHO(aq)+I2(aq)=CH3I(l)+HI(aq)+CO(g)(慢反应);
第②步为快反应;增大I2的浓度能明显增大总反应的平均速率。理由为___。
(3)工业上可利用煤的气化产物(水煤气)合成甲醇:CO(g)+2H2(g)CH3OH(g)ΔH<0,在一定条件下,将1molCO和2molH2通入密闭容器中进行反应,当改变某一外界条件(温度或压强)时,CH3OH的体积分数φ(CH3OH)变化趋势如图所示:
①下列描述能说明该反应处于化学平衡状态的是___(填字母)。
A.CO的体积分数保持不变
B.容器中CO的转化率与H2的转化率相等
C.v逆(CH3OH)=2v逆(H2)
D.容器中混合气体的平均相对分子质量保持不变
②平衡时,M点CH3OH的体积分数为10%,则CO的转化率为___。
③X轴上a点的数值比b点___(填“大”或“小”),某同学认为图中Y轴表示温度,你认为他判断的理由是___。
(4)甲醇与CO可以生成醋酸,常温下将amol/L的醋酸与bmol·L-1Ba(OH)2溶液以2:1体积比混合,混合溶液中2c(Ba2+)=c(CH3COO-),则醋酸的电离平衡常数为_____(忽略混合过程中溶液体积的变化,用含a和b的代数式表示)。
23.(2021·天津北辰·统考一模)国务院总理李克强在2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,优化产业结构和能源结构,努力争取2060年前实现碳中和。碳的化合物在工业上应用广泛,下面有几种碳的化合物的具体应用:
(1)已知下列热化学方程式:
i.CH2=CHCH3(g)+Cl2(g)→CH2ClCHClCH3(g) ΔH=-133kJ·mol-1
ii.CH2=CHCH3(g)+Cl2(g)→CH2=CHCH2Cl(g)+HCl(g) ΔH=-100kJ·mol-1
①写出相同条件下CH2=CHCH2C1和HCl合成CH2ClCHClCH3的热化学方程式____。
②已知①中的正反应的活化能E正为132kJ·mol-1,请在下图中标出①中逆反应的活化能E逆及数值_______。
(2)温度为T℃时向容积为2L的密闭容器中投入3molH2和1molCO2发生反应CO2(g)+3H2(g)⇌ CH3OH(g)+H2O(g) ΔH1=-49.4kJ·mol-1,反应达到平衡时,测得放出热量19.76kJ,求平衡时:
①H2的转化率为_______
②T℃时该反应的平衡常数K=_______(列计算式表示)。
(3)目前有Ni-CeO2催化CO2加H2形成CH4的反应,历程如图所示,吸附在催化剂表面的物种用*标注。
①写出上述转换中存在的主要反应的化学方程式_____。
②有人提出中间产物CO的处理,用反应2CO(g)=2C(s)+O2(g) ΔH>0来消除CO的污染,请用文字说明是否可行_____。
(4)T℃,HCOOH与CH3COONa溶液反应:HCOOH+CH3COO-⇌HCOO-+CH3COOH,该反应的K=12.5,则该温度下醋酸的电离常数Ka(CH3COOH)=_____(T℃时Ka(HCOOH)=2×10-4)。
24.(2021·天津·统考二模)催化氧化二氧化硫是工业制硫酸的主要反应:
(1)催化过程涉及两步反应,其中第一步反应为: ,则第二步反应为_______,其反应热,用含的式子表示为_______。
(2)为研究该反应,某同学设计了以下三种已装固体催化剂的密闭容器装置。
在初始体积与温度相同的条件下,甲、乙、丙中均按、投料,达平衡时,三个容器中的转化率从大到小的顺序为_______(用“甲、乙、丙”表示)。
(3)在T℃和下,向容器丙中,加入和,达到平衡后的转化率为60%。已知用平衡分压(分压=总压×物质的量分数)代替平衡浓度计算,得到的平衡常数即为压强平衡常数,则_______;相同条件下,若按、、进行投料,则反应开始时_______(填“>”、“<”或“=”)
(4)工业上用溶液吸收,再经电解转化为。已知的电离平衡常数为,,则溶液中含S元素粒子浓度由大到小的顺序为_______。如图为电解溶液产生硫酸的装置。则A为电解池的_______(填“阴极”或“阳极”),写出阳极区域产生硫酸的电极反应式_______。
25.(2021·天津河西·统考三模)硫及其化合物在工农业生产中有广泛的应用,请按要求回答下列问题。
(1)SCl2常做消毒剂,根据下列化学键的键能及S4的结构式:
化学键
S—S
S—Cl
Cl—Cl
键能/(kJ•mol-1)
266
255
243
则反应S4(g)+4Cl2(g)=4SCl2(g)△H=___kJ•mol-1。
(2)S2Cl2常用作橡胶工业的硫化剂,其分子空间结构如图。两个Cl原子犹如在半张开的书的两面上,由此可知它属于__分子(填“极性”或“非极性”)。且已知它易与水反应,产生无色有刺激性气味的气体,同时生成淡黄色沉淀,则该反应的化学方程式___。
(3)工业上制取SCl2的反应之一为S2Cl2(g)+Cl2(g)=2SCl2(g)△H<0。一定压强下,向10L密闭容器中充入1molS2Cl2和1molCl2发生上述反应,Cl2与SCl2的消耗速率与温度的关系如图所示。
①A、B、C、D四点对应状态下,达到平衡状态的有___(填字母),理由是__。
②提高SCl2产率可采取措施有___(写出一项即可)。
③若某温度下,反应达到平衡时S2Cl2的转化率为x,则化学平衡常数K=___(用含x的代数式表示)。
(4)向含Zn2+的废水中加入CH3COOH和CH3COONa组成的缓冲溶液调节pH,通入H2S发生反应:Zn2++H2SZnS(s)+2H+。处理后的废水中部分微粒浓度为:
微粒
H2S
CH3COOH
CH3COO-
浓度(mol•L-1)
0.10
0.05
0.10
处理后的废水的pH=___,c(Zn2+)=___。[已知:Ksp(ZnS)=1.0×10-23,Ka1(H2S)=1.0×10-7,Ka2(H2S)=1.0×10-14,Ka(CH3COOH)=2.0×10-5。
26.(2021·天津红桥·统考二模)H2S的转化是资源利用和环境保护的重要研究课题。请回答下列问题:
(1)苯硫酚(C6H5SH)是一种重要的有机合成中间体,工业上常用氯苯(C6H5Cl)和硫化氢(H2S)来制备苯硫酚。已知下列两个反应的能量关系如下图所示,则C6H5Cl与H2S反应生成C6H5SH的热化学方程式为___________。
(2)H2S与CO2在高温下反应制得的羰基硫(COS)可用于合成除草剂。在610 K时,将0.40 mol H2S与0.10 mol CO2充入2.5 L的空钢瓶中,发生反应:H2S(g)+CO2(g)COS(g) +H2O(g);= +35 kJ/mol,反应达平衡后水蒸气的物质的量为0.01 mol 。
①在610 K时,反应经2min达到平衡,则0~2min的反应速率v(H2S)=___________。
②该条件下,容器中反应达到化学平衡状态的依据是___________(填字母序号)。
A.容器内混合气体密度不再变化 B.v消耗(H2S)=v生成(COS)
C.容器内的压强不再变化 D.H2S与CO2的质量之比不变
(3)工业上可以通过硫化氢分解制得H2和硫蒸气。在密闭容器中充入一定量H2S气体,反应原理:2H2S(g) 2H2(g) + S2(g),H2S气体的平衡转化率与温度、压强的关系如下图所示。
①图中压强(P1、P2、P3)的大小顺序为___________,△H___________0(填>、<或=)。
②如果要进一步提高H2S的平衡转化率,除改变温度、压强外,还可以采取的措施有___________。
③在温度T2、P3=5MPa条件下,该反应的平衡常数Kp=___________ MPa (已知:用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)
27.(2021·天津河北·统考二模)研究发现,含PM2.5的雾霾主要成分有SO2、NOx、CxHy及可吸入颗粒等。
(1)在煤炭中加入碳酸钙可减少酸雨的形成。在研究碳酸盐分解时发现MgCO3和CaCO3的能量关系如图所示(M=Ca、Mg),△H表达式为___;已知CaCO3(s)=CaO(s)+CO2(g)△H>0,则该反应能自发进行的条件是___。
工业上可用浓氨水吸收SO2,写出将过量的SO2通入浓氨水的离子方程式___。
(2)某研究组模拟三种已装固体V2O5催化剂的密闭容器装置,发生的反应为:2SO2(g)+O2(g)2SO3(g)△H1=-197.7kJ·mol-1
I.在初始体积与温度相同的条件下,甲、乙、丙中均按2molSO2、1molO2投料,达平衡时;三个容器中SO2的转化率从大到小的顺序为___(用“甲、乙、丙”表示)。
II.下列均能作为容器甲和容器乙达平衡标志的是___(填字母)。
A.温度不变 B.密度保持不变 C.压强保持不变 D.O2浓度保持不变
III.400℃,在容器丙中投入4molSO2、2molO2进行反应时,放出akJ热量;若在500℃,投入2molSO2、1molO2进行反应,放出bkJ热量,则a___2b(填“﹥”、“﹤”或“=”)。
(3)已知酸性H2SO3>>HSO>,水杨酸()与Na2SO3溶液反应,生成物____(填字母)。
A. B.SO2 C.NaHCO3 D.
答案选A
(4)亚硫酸电离常数为Ka1,Ka2改变0.lmol/L亚硫酸溶液的pH,其平衡体系中含硫元素微粒物质的量分数δ与pH的关系如图,=___。
28.(2021·天津河东·统考二模)为改变生橡胶受热发粘遇冷变硬的不良性能,工业上常将橡胶硫化来改善橡胶的性能,S2Cl2和SCl2均为改善橡胶性能的重要化工产品。
(1)已知下列化学键的键能及S4的结构式
化学键
S-S
S-Cl
Cl-Cl
键能/(kJ/mol)
266
255
243
则S4(s)+ 4Cl2(g)=4SCl2(g) △H=___________kJ/mol。
(2)S2Cl2的电子式是___________。
(3)S2Cl2易与水发生反应,反应中只有一种元素的化合价发生变化,产生无色有刺激性气味的气体,同时有淡黄色沉淀生成,写出此反应的化学反应方程式___________;该反应中被氧化和被还原的元素的质量之比是___________。
(4)反应S2Cl2 (g)+ Cl2(g)2SCl2(g) △H<0,在一定压强下, 向10 L密闭容器中充入1 mol S2Cl2和l mol Cl2发生上述反应,Cl2与SCl2的消耗速率与温度的关系如图所示。
①A、B、C三点对应状态下,达到平衡状态的有___________ (填字母)。
②其他条件不变只改变下列一个条件,可以提高S2Cl2平衡转化率的是______
A.升高体系的温度
B.增大氯气的物质的量
C.压缩容器的体积
D.使用合适的催化剂
③某温度下,反应达到平衡时S2Cl2 的转化率是a,用含a的式子表示此反应的化学平衡常数K=___________。
(5)SCl2与SO3反应可以制备亚硫酰氯(SOCl2),锂、亚硫酰氯(Li/SOCl2)电池是一种比能量最高的电池,若正极反应为2SOCl2+4e- =SO2+S+4Cl-,负极反应式为___________。
29.(2021·天津和平·统考二模)处理含硫烟气(主要成分为SO2)备受关注。回答下列问题:
Ⅰ.处理含硫烟气有以下两种方法
(1)水煤气还原法
已知:i.2CO(g)+SO2(g) S(l)+2CO2(g) △H1=—37.0kJ·mol-1
ii.2H2(g)+SO2(g) S(l)+2H2O(g) △H2=+45.4kJ·mol-1
写出CO(g)与H2O(g)反应生成CO2(g)、H2(g)的热化学方程式为___。
(2)碱液吸收法
①步骤1:用足量氨水吸收SO2,试写出该反应的化学方程式___。
②步骤2:再加入熟石灰的反应,试写出该反应离子方程式___。
③已知:25℃时,Kb(NH3·H2O)=a;Ksp(CaSO3)=b。该温度下,步骤2中反应的平衡常数K=__(用含a、b的代数式表示)。
Ⅱ.常温下将NaOH溶液滴加到一定浓度的H2SO3溶液中,混合溶液的pH与离子浓度变化的关系如图所示。
(1)Ka1(H2SO3)=___。
(2)当滴加NaOH溶液使混合溶液呈中性时,溶液中各离子浓度大小关系为___。
Ⅲ.将组成(物质的量分数)为m%SO2(g)、2m%H2(g)和q%He(g)的气体通入密闭反应器,使反应:H2(g)+SO2(g)S(l)+H2O(g),在温度t、压强P条件下进行反应,平衡时,若H2转化率为α,则平衡常数Kp=___(以分压表示,分压=总压×物质的量分数)。
四、结构与性质
30.(2021·天津·模拟预测)铁单质及其化合物的应用非常广泛。
(1)基态Fe原子的价层电子排布式为___________。
(2)用X射线衍射测定,得到Fe的两种晶胞A、B,其结构如图所示。晶胞A中每个Fe原子紧邻的原子数为___________。每个晶胞B中含Fe原子数为___________。
(3)合成氨反应常使用铁触媒提高反应速率。如图为有、无铁触媒时,反应的能量变化示意图。写出该反应的热化学方程式___________。从能量角度分析,铁触媒的作用是___________。
(4)Fe3+可与H2O、SCN-、F-等配体形成配位数为6的配离子,如、、。某同学按如下步骤完成实验:
①为浅紫色,但溶液Ⅰ却呈黄色,其原因是___________,为了能观察到溶液Ⅰ中的浅紫色,可采取的方法是___________。
②已知Fe3+与SCN-、F-的反应在溶液中存在以下平衡:;,向溶液Ⅱ中加入NaF后,溶液颜色由红色转变为无色。若该反应是可逆反应,其离子方程式为___________,平衡常数为___________(用K1和K2表示)。
参考答案:
1.B
【详解】A.根据图象可知,1,2-加成产物A含有的总能量大于1,4-加成产物B,则1,4-加成产物B稳定,A说法错误;
B.第一步的反应的活化能大于第二步,则第一步的反应速率比第二步慢,B说法正确;
C.该加成反应的反应热为1,3-丁二烯的总能量与1,2-加成产物A或1,4-加成产物B的总能量的差值,C说法错误;
D.根据图象可知,加成反应为放热反应,则升高温度,平衡逆向移动,则1,3-丁二烯的平衡转化率减小,D说法错误;
答案为B。
2.C
【详解】A.据图可知反应过程中甲醇中的O-H键也发生断裂,故A错误;
B.反应I的活化能为反应物断键吸收的能量,即反应I过程中最大能量与a的差值,图中没有体现反应I过程中的最大能量,故B错误;
C.焓变=生成物的能量-反应物能量,据图可知总反应的热化学方程式为:,故C正确;
D.据图可知反应I的活化能大于反应Ⅱ的活化能,活化能越大反应越慢,慢反应决定整个反应的反应速率,所以反应I决定整个反应进程的快慢,故D错误;
综上所述答案为C。
3.D
【详解】A.水力发电站是水的势能转化为动能,再转化为水轮机的机械能,再转化为电能,A不合题意;
B.地热发电厂是将地热能转化为水的势能,再转化为蒸汽机的机械能,最后转化为电能,B不合题意;
C.风力发电厂是将风能转化为机械能,最后转化为电能,C不合题意;
D.燃料电池发电站是将燃料的化学能直接转化为电能,D符合题意;
故答案为:D。
4.C
【详解】A.根据题意,H2O2与CH4转化为含氧有机物, 为H2O2的比例模型,A正确,不选;
B.根据图示步骤i、ii,得到产物水和CH3OH,方程式为,B正确,不选;
C.根据图示,步骤iv生成的H2O,其中的H来自于步骤ii生成的CH3OH和H2O2,C错误,符合题意;
D.模仿步骤ii,H2O2分解成2个-OH,1个结合H原子生成H2O,1个与v生成的-CHO结合得到HCOOH,因此步骤vi生成HCOOH和H2O,D正确,不选;
故选C。
5.B
【详解】A.侯德榜先生的贡献是联合制碱法制纯碱,故A正确;
B.盖斯先生的贡献是提出了盖斯定律用于计算反应热,故B错误;
C.徐光宪先生的贡献是提出了稀土元素分离及应用的方法,故C正确;
D.门捷列夫的贡献是首先发现了元素周期律,绘制了元素周期表,故D正确;
故选B。
6.D
【详解】A.Cl2是该反应的反应物,增大反应物的浓度,反应速率增大,但增大氯气的浓度不影响ΔH的大小,故A正确;
B.第一步反应所需活化能Ea1大于第二步反应所需活化能Ea2,第一步反应单位体积内活化分子百分数低于第二步反应,故第二步反应速率更大,故B正确;
C.反应物总能量大于生成物总能量,为放热反应,故C正确;
D.Ea1、Ea2分别为第一步反应、第二步反应所需活化能,升高温度,反应所需活化能不变,即Ea1、Ea2不变,故D错误;
故选D。
7.C
【详解】A.根据正戊烷和异戊烷的燃烧热,① , ,根据盖斯定律①−②得正戊烷异构化为异戊烷反应,故A正确;
B.根据表中沸点数值,在28~36℃时,随温度升高,异戊烷气化离开体系,产物浓度降低,导致平衡正向移动,正戊烷的平衡转化率增大,故B正确;
C.催化剂不影响平衡,不能提高平衡转化率,故C错误;
D. 150℃时,正戊烷和异戊烷都是气态,此时反应前后气体体积不变,增大压强,平衡不移动,正戊烷的平衡转化率不变,故D正确;
答案选C。
8.B
【详解】A.CO2与N2O均为三原子分子,22个电子,互为等电子体,所以均为直线型分子,故A错;
B.反应①N2O+Fe+=N2+FeO+(慢),反应②FeO++CO=CO2+Fe+(快),由图示可知,则反应①活化能较反应②大,故B正确;
C.选项中未告诉是否处于标况下,若标况下,则根据可知,每转移1mol电子,生成N2体积为11.2L,故C错;
D.总反应的化学反应速率由反应较慢一步所决定,即由反应①决定,故D错;
答案选B。
9.D
【详解】A.由题意可知,第一步Fe*被消耗,第二步Fe*又生成,说明Fe*是反应的催化剂,故A正确;
B.根据反应历程图,可知两步反应的生成物的总能量均低于反应物的总能量,则两步反应均为放热反应,ΔH均小于0,故B正确;
C.根据盖斯定律:第一步反应+第二步反应=总反应,则总反应为,故C正确;
D.根据反应历程图,第一步反应活化能高于第二步反应活化能,活化能越低,反应速率越快,则第一步反应比第二步反应慢,故D错误;
故选D。
10.C
【详解】A.氢气燃烧放出大量能量,因此发射时使用液氢和液氧作推进剂,是利用燃烧反应提供能量的原理,A正确;
B.硅单质可以导电,“嫦娥五号”探测器使用的太阳能电池帆板其主要成分是Si,B正确;
C.分子式相同结构不同的化合物互为同分异构体。月壤中含有珍贵的,与均是核素,二者质子数相同中子数不同,互为同位素,C错误;
D.合成纤维材料的性能稳定性强,留在月球的国旗长时间不褪色、不分解,是利用了合成纤维材料性质的稳定性,D正确;
答案选C。
11.C
【详解】A.催化剂能降低反应的活化能,则过程Ⅱ是有催化剂的能量变化曲线,故A错误;
B.由图可知,二氧化碳催化合成液态甲酸的反应为1mol二氧化碳和1mol氢气反应生成1mol液态甲酸放出31.2kJ热量,反应的热化学方程式为CO2(g) +H2(g)=HCOOH(l) △H=-31.2kJ/mol,故B错误;
C.由CO2(g) +H2(g)=HCOOH(l)可知,反应物全部转化为生成物甲酸,因此该反应的原子利用率为100%,符合绿色化学的理念,故C正确;
D.二氧化碳与酸雨的形成无关,该反应可用于的吸收和转化,但不能缓解酸雨的形成,故D错误;
故选C。
12. +113.0KJ/mol b、c 20% 该反应是放热反应,升高温度,平衡逆向移动,不利于反应物的转化,故反应温度不宜过高 0.05
【详解】(1)根据盖斯定律,反应①×2-反应②得2NO2(g)=2NO(g)+O2(g) ∆H=-(2×∆H1+ ∆H2)= -(2×41.8-196.6)=+113.0kJ/mol,故答案为:+113.0kJ/mol。
(2) 温度低于1050K时,反应速率较慢,反应未达平衡状态,温度等于或高于1050K时达到平衡,1100K是NO的平衡转化率为40%,假设通入NO的物质的量为1mol,利用三段式则有: ,所以N2的平衡体积分数为,故答案为:b、c,20%。
(3) ①NO(g)+NO2(g)+2NH3(g)3H2O(g)+2N2(g),该反应是放热反应,升高温度,平衡逆向移动,不利于反应物的转化,故反应温度不宜过高,故答案为:该反应是放热反应,升高温度,平衡逆向移动,不利于反应物的转化,故反应温度不宜过高。
②500℃时,在2L恒容密闭容器中充入1molNO、1molNO2和2molNH3,8min时反应达到平衡,此时NH3的转化率为40%,体系压强为p0MPa,利用三段式则有: ,v(N2)= mol·L-1·min-1,根据阿伏伽德罗定律,恒温恒容时,压强与物质的量成正比,500℃时该反应的平衡常数Kp= MPa= Mpa,故答案为:0.05、。
13. > < = > 不是 该反应为放热反应,根据曲线可知,M点对应温度的平衡脱氮率应该更高
【详解】(1)CO燃烧热的△H1=−283.0kJ⋅mol−l,热化学方程式为:① ,
②,
盖斯定律计算①×2−②得到△H3=;
(2) A.开始充入和,不等于化学计量数之比,当和的物质的量之比不变时,说明一氧化碳和一氧化氮的物质的量不变,可逆反应处于平衡状态,故A正确;
B.反应容器的体积不变,反应物生成物都是气体,反应前后气体总质量不变, 密度不变,不能说明可逆反应处于平衡状态,故B错误;
C.反应前后气体的体积不相等,即是反应前后气体的物质的量变化,当摩尔质量不变时,可逆反应处于平衡状态,故C正确;
D.不符合速率之比等于化学计量数之比,不能判定反应是否达到平衡状态,故D错误;
故答案为:AC。
(3)①对比Ⅱ、I可知,I到达平衡时间缩短且起始压强增大,应是升高温度,T1>T2,
故答案为:>;
②对比Ⅱ、Ⅲ可知,平衡时压强不变,Ⅲ到达平衡时间缩短,改变条件反应速率加快且不影响平衡移动,应是使用催化剂,平衡不移动,故CO转化率不变,I与Ⅱ相比,I中温度较高,正反应为放热反应,平衡向逆反应方向移动,CO的转化率减小,所以CO 的平衡转化率:I
③催化剂能降低反应活化能,加快反应速率,所以a 点的 v 逆>b 点的 v 正,
故答案为:>;
(4)由图可知M点不是对应温度下的平衡脱氮率,对于曲线II而言,M点时反应没有达到平衡状态(450℃左右达到平衡),同时该反应正向为放热反应,根据曲线II可知,M点对应温度的平衡脱氮率应该更高;
故答案为:不是;该反应为放热反应,根据曲线可知,M点对应温度的平衡脱氮率应该更高。
14. +175.2kJ/mol BC < > 66.7% < 2SO+4H++2e-=S2O+2H2O 11.2
【分析】利用盖斯定律求反应热;达到平衡时,正、逆反应速率相等,各物质的浓度不变,气体的总物质的量不变,以此判断;增大压强,平衡正向移动,平衡混合气体中氨气的百分含量增大;升高温度,平衡逆向移动,平衡常数减小;起始时投入氮气和氢气分别为1mol、3mol,反应的方程式为N2(g)+3H2(g)⇌2NH3(g),C点氨气的含量为50%,结合方程式计算;压强越大、温度越高,反应速率越快;根据图示可知,阴极通入的发生得电子的还原反应生成,结合溶液为酸性书写阴极反应式;写出电解池的总反应,根据通过的氢离子物质的量可知转移电子的物质的量,吸收柱中生成的气体为氮气,然后利用电子守恒计算氮气的物质的量,最后根据V=n·Vm计算标况下体积。
【详解】I.(1)已知a.CH4(g)+H2O(g) CO(g)+3H2(g) ∆H1=+216.4kJ/mol
b.CO(g)+H2O(g) CO2(g)+H2(g) ∆H2=–41.2kJ/mol
将a+b,可得CH4(g)+2H2O(g) CO2(g)+4H2(g) ∆H= (+216.4-41.2)kJ/mol=+175.2kJ/mol;
(2)①A.N2和H2的起始物料比为1:3,且按照1:3反应,则无论是否达到平衡状态,转化率都相等,N2和H2转化率相等不能用于判断是否达到平衡状态,A错误;
B.气体的总质量不变,由于该反应的正反应是气体体积减小的反应,恒压条件下,当反应体系密度保持不变时,说明体积不变,则达到平衡状态,B正确;
C. 保持不变,说明氢气、氨气的浓度不变,反应达到平衡状态,C正确;
D.达平衡时各物质的浓度保持不变,但不一定等于化学计量数之比, =2不能确定反应是否达到平衡状态,D错误;
故合理选项是BC;
②由于该反应的正反应是气体体积减小的反应,增大压强,平衡正向移动,平衡混合气体中氨气的百分含量增大,由图像可知P1
【点睛】本题考查化学平衡、电解原理、反应热计算等知识,明确盖斯定律、电解原理,把握化学平衡三段法、转化率计算等为解答的关键,知识点较多、综合性较强,充分考查了学生的分析、理解能力、计算能力及综合应用能力。
15. -2219.9kJ/mol bd 3.5 不变 负 C3H8+10O2--20e-=3CO2↑+4H2O 生成无色气体和白色沉淀
【分析】利用盖斯定律进行计算;根据平衡状态的判断依据进行判断;根据“三段式”列出平衡常数表达式进行计算,化学平衡常数只受温度的影响;根据燃料电池的原理写出电极反应和离子移动的方向;根据离子的放电顺序写出电极反应,根据电极反应描述实验现象。
【详解】(1)将题给两个热化学方程式依次编号为①、②,利用盖斯定律,根据所求的热化学方程式,即得C3H8(g)+5O2(g)=3CO2(g) +4H2O(1) △H== -2219.9kJ/mol;
(2)①a.反应CO(g)+H2O(g)⇌CO2(g)+H2(g)是一个反应前后气体体积不变的吸热反应,反应过程中压强始终不变,压强不变不能作为判断平衡的标志,故a不选;
b.当正逆反应速率相等时,反应已达平衡,故b选;
c.混合气体的平均相对分子质量由M=可得,m和n始终不变,故M始终不变,平均相对分子质量不变不能作为判断平衡的标志,故c不选;
d.二氧化碳的浓度不再变化,说明反应已达平衡,故d选;
答案为bd;
②1molC3H8在不足量的氧气里燃烧,生成1molCO和2molCO2以及气态水,根据元素守恒可知,则生成水为4mol,5min 后体系达到平衡,经测定,H2为0.8mol,容器的体积为1L,则列出“三段式”
因此K=;
③由于平衡常数只与温度有关,所以在温度不变时再充入少量CO,平衡常数是不变的;
(3) 根据原电池的工作原理,电池内部电解质中的阴离子由正极向负极移动,其中通空气的一极为正极,通丙烷的一极为负极,则正极反应式为O2+4e-=2O2-,而负极反应式为C3H8+10O2- -20e-=3CO2+4H2O;
(4) 用惰性电极电解足量Mg(NO3)2和NaCl 的混合溶液,阴极附近溶液中优先放电的阳离子是H+,电极反应式为2H2O−2e−=H2↑+2OH−,同时在阴极附近的溶液中生成的OH-与Mg2+结合生成Mg(OH)2沉淀:Mg2++2OH−=Mg(OH)2↓,所以电解开始后,阴极附近的现象是生成无色气体和白色沉淀。
【点睛】第(2)计算平衡常数的关键是:根据元素守恒判断出水的物质的量。
16. 不能 -28 0.048 64 2CO2+3OHˉ=CO+HCO+H2O c(Na+)>c(HCO)>c(CO)> c(OHˉ) > c(H+) ac 恒压条件下充入一定量的二氧化碳气体
【分析】(3)初始投料为3molFe2O3和3molCO,Fe2O3和Fe均为固体,容器恒容,则根据反应方程式可知反应过程中气体的总物质的量不变,始终为3mol;平衡时CO2的体积分数为80%,即物质的量分数为80%,所以n(CO2)=3mol×80%=2.4mol,n(CO)=0.6mol。
【详解】(1)当△G=△H-T△S<0时反应可以自发进行,反应iv的焓变△H4>0,该反应为气体分子数增多的反应,所以△S>0,不能满足任何温度下△G都小于0,所以该反应不能在任何温度下自发进行;
(2)已知:i.C(s)+O2(g)=CO2(g)△H1=-393kJ/mol
ii.C(s)+CO2(g)=2CO(g)△H2=+172kJ/mol
iii.Fe2O3(s)+3CO(g)2Fe(s)+3CO2(g)△H3
iv.2Fe2O3(s)+3C(s)4Fe(s)+3CO2(g)△H4=+460kJ/mol
由盖斯定律可知(iv-ii×3)得到Fe2O3(s)+3CO(g)=2Fe(s)+3CO2(g)△H3=[+460kJ/mol-(+172kJ/mol)×3]= -28kJ/mol;
(3)①根据分析可知0-5min内△n(CO2)=2.4mol,容器的容积为10L,所以v(CO2)==0.048mol·L-1·min-1;
②平衡时c(CO2)=0.24mol/L,c(CO)=0.06mol/L,平衡常数K==64;
③混合气体中n(CO2)=2.4mol,1L3.6mol/L的NaOH溶液中n(NaOH)=3.6mol,n(CO2): n(NaOH:2:3,所以该反应的离子方程式为2CO2+3OHˉ=CO+HCO+H2O,反应后溶液中的溶质为等物质的量浓度的Na2CO3和NaHCO3;Na+不发生水解,所以c(Na+)最大;碳酸根的水解程度大于碳酸氢根,所以c(HCO)>c(CO);溶液显碱性,所以c(OHˉ) > c(H+),水解是微弱的,所以溶液中离子浓度由大到小为c(Na+)> c(HCO)>c(CO)> c(OHˉ) > c(H+);
④a.固体的物质的量不再变化,说明正逆反应速率相等,反应达到平衡状态,故a能说明;
b.反应前后气体物质的量始终不变,体系的压强始终保持不变,不能说明反应达到平衡状态,故b不能说明;
c.反应前后气体质量变化,气体物质的量不变,所以未平衡时混合气体的平均摩尔质量会发生改变,当其保持不变说明反应达到平衡状态,故c能说明;
d.消耗CO和生成CO2均为正反应,只要反应发生单位时间内消耗CO和生成CO2的物质的量就相等,故其不能说明反应达到平衡状态,故d不能说明;
综上所述选ac;
(4)据图可知t2时刻正反应速率突然减小,然后又逐渐增大,之后达到平衡时与原平衡的反应速率相等,说明反应物的浓度先是被减小,然后又逐渐增大,则该条件改变后平衡逆向移动,该反应正反应为放热反应,升高温度可以使平衡逆向移动,但升高温度不能使正反应速率减小。而该反应前后气体分子数不变,若保持压强不变向密闭容器中充入二氧化碳,则容器的体积增大导致一氧化碳的浓度减小,正反应速率减小,则二氧化碳的浓度增大了,逆反应速率大于正反应速率,平衡向逆反应方向移动,根据温度不变K=不变,且压强不变时气体的浓度不变,所以再次平衡时正反应速率与原平衡相等。因此,改变的条件可能是:恒压条件下充入一定量的二氧化碳气体。
【点睛】当反应达到平衡状态时,正逆反应速率相等,各物质的浓度、百分含量不变,以及由此衍生的一些量也不发生变化,解题时要注意判断相关物理量是否为变量,若随着反应的进行该物理量由变化到定值时,说明可逆反应到达平衡状态。
17.(1)CH3OH(l)+O2(g)=CO(g)+2H2O(l)△H=-443.5kJ•mol-1
(2) > 3 降低温度或分离出氢气或增加水蒸气的浓度
(3) 该反应是熵增反应 0.0594mol/(L•min) 前者耗能更少
【详解】(1)CO(g)、CH3OH(l)的燃烧热(△H)分别为-283.0kJ•mol-1和-726.5kJ•mol-1,可知①CO(g)+O2(g)=CO2(g)△H=-283.0kJ•mol-1,②CH3OH(l)+O2(g)=CO2(g)+2H2O(l)△H=-726.5kJ•mol-1,根据盖斯定律②-①得CH3OH(l)+O2(g)=CO(g)+2H2O(l)△H=(-726.5+283)kJ•mol-1=-443.5kJ•mol-1,故答案为:CH3OH(l)+O2(g)=CO(g)+2H2O(l)△H=-443.5kJ•mol-1;
(2)①由图可知,CO2的平衡转化率随着温度升高而增大,说明升高温度,平衡正向移动,则该反应为吸热反应,△H>0,故答案为:>;
②240℃时,将3mol CO2和2mol H2通入容积为8L的恒容密闭容器中,达到平衡时CO2的转化率为50%,,K=,故答案为:3;
③由图可知,t2时改变条件后,CO2和CO浓度瞬间没有改变,之后CO2的浓度增大,CO浓度减小,说明平衡逆向移动,该反应是吸热反应,则改变的条件有可能是降低温度或分离出氢气或增加水蒸气的浓度,故答案为;降低温度或分离出氢气或增加水蒸气的浓度;
(3)①该反应△H>0,由于该反应是气体分子数增多的反应,则体系混乱度增大,即该反应是熵增反应,△S>0,所以高温下△H-T△S<0,反应自发进行,故答案为:该反应是熵增反应;
②反应经5min达到平衡,测得H2的物质的量为2.97mol,△n(H2)=2.97mol,,故答案为:0.0594mol/(L•min);
③该反应在一定温度下能自发进行,相对于电解水制备H2消耗大量的电能,该反应耗能更少,故答案为:前者耗能更少。
18. 2N2(g)+6H2O(g)= 4NH3(g) +3O2(g) △H=+1266kJ•mol-1 < C 78.6% 0.086 降低温度、增大压强
【详解】(1)根据盖斯定律,2反应I +3反应II得到4NH3(g) +3O2(g)= 2N2(g)+6H2O(g) △H=-1266kJ•mol-1,该合成氨的原理为H2O和N2反应O2和NH3,则热化学方程式为:2N2(g)+6H2O(g)= 4NH3(g) +3O2(g) △H=+1266kJ•mol-1;
(2)①由图象知,A点反应未达到平衡,在到达平衡过程中,v逆增大,平衡时v正=v逆,故A点的逆反应速率< B点的正反应速率;
②A.该反应为气体分子数减少的反应,体系压强不再变化,说明达到平衡状态,A正确;
B.反应不生成气体,气体平均摩尔质量不再变化,说明达到平衡状态,B正确;
C.NH3的消耗速率和CO2的消耗速率之比始终为2:1,不能说明达到平衡状态,C错误;
D.固体质量不再发生变化,说明达到平衡状态,D正确;
故选:C;
(3)①设起始投入NO的物质的量为1mol,列三段式:,X点N2O2的物质的量分数为0.44/(0.12+0.44)×100%=78.6%;压力平衡常数;
②由图可知,温度较大反应速率快,达平衡时需要时间短,则T2>T1,温度升高,NO平衡转化率减小,说明平衡逆向移动,可推出该反应为放热反应,则提高NO平衡转化率即促进平衡正向移动的条件为降低温度、增大压强。
19. 46 放热 小于 0.171 mol/(L·min) 420 K前反应未达平衡,转化率较低 NO2-e- +H2O=+2H+
【详解】(1)N2与H2合成NH3的化学反应方程式:N2+3H2⇌2NH3,每有1 mol N2参加反应,转移6 mol电子,反应过程中的能量变化为Q=946 kJ+3×436 kJ-6×391 kJ=- 92 kJ,即反应放出92 kJ的热量,当合成反应当过程中转移3 mol电子时,则理论上放出热量是=46 kJ;
(2)①该反应平衡常数与温度关系为1gKp=5.08+,可见:温度越高,化学平衡常数越小。说明升高温度,化学平衡逆向移动,逆反应为吸热反应,故该反应的正反应是放热反应;
②对于反应2NO(g)+Cl2(g)⇌2ClNO(g),在反应开始时n(NO)=2 mol,n(Cl2)=1 mol,n(ClNO)=0,反应过程中△n(NO)=1 mol,根据物质反应转化关系可知平衡时,n(NO)=1.0 mol,n(Cl2)=0.5 mol,n(ClNO)=1.0 mol,在相同外界条件下,压强比等于气体的物质的量的比,所以==,所以P总=P0,所以化学平衡常数Kp===;
③由已知条件可知反应在加入2 mol NO(g)和1 mol Cl2(g)时反应达到平衡时NO的转化率是50%。该反应的正反应是气体体积减小的反应,若在同温度下,在相同容器中,充入1 mol NO(g)和0.5 molCl2(g),气体的压强减小,减小压强,化学平衡逆向移动,反应达到平衡时NO的平衡转化率降低,所以在充入1 mol NO(g)和0.5 molCl2(g)时NO的平衡转化率会小于50%;
(3)根据图示可知:在420 K时NO转化率是2%,此时消耗NO的n(NO)=3 mol×2%=0.06 mol;在580 K时NO转化率是59%,此时消耗NO的n(NO)=3 mol×59%=1.77 mol,此时段内NO消耗的物质的量为△n(NO)=1.77 mol-0.06 mol=1.71 mol,由于容器的容积是2 L,所以NO的反应速率v(NO)=== 0.171 mol/(L·min);
420 K之前,NO生成N2的转化率偏低,原因可能是在420 K前反应未达平衡,转化率较低;
(4)D电极上有红色物质析出,说明D电极为正极,则与D电极连接的A电极为阳极,通入的气体失去电子发生氧化反应,A电极上通入NO2,其失去电子变为N,故A电极的电极反应式为:NO2-e- +H2O= N+2H+。
20. < A 变小 N2H4+H2O⇌N2H+OH- 10-9.3 2NH3-2e-+O2-=N2H4+H2O
【分析】根据题给方程式写出相应反应的平衡常数表达式,结合盖斯定律分析;根据图甲知随着温度的升高,平衡时氢气的物质的量逐渐增大,水蒸气的物质的量逐渐减小,说明升高温度,平衡逆向移动;393K下,该反应达到平衡后,再向容器中按n(CO2):n(H2)=1:3投入CO2和H2,相当于增大压强,该反应正反应为气体物质的量减小的反应,增大压强,平衡正向移动;POH=9.3时,N2H、N2H浓度相等,Ka2== =c(OH-)得N2H4第二步电离常数;在阳极氨气失电子,发生氧化反应,结合电解质写出电极方程式。
【详解】(1)NH3和(NH4)2CO3与CO2可发生如下可逆反应:2NH3(1)+H2O(1)+CO2(g)(NH4)2CO3(aq)K1= ,NH3(l)+H2O(1)+CO2(g)NH4HCO3(aq)K2= ,(NH4)2CO3(aq)+H2O(1)+CO2(g)2NH4HCO3(aq)K3= =,则K3=(用含K1、K2的代数式表示),故答案为:;
(2)①根据图甲知随着温度的升高,平衡时氢气的物质的量逐渐增大,水蒸气的物质的量逐渐减小,说明升高温度,平衡逆向移动,该反应为放热反应,a<0;故答案为:<;
②A.使用催化剂,可降低反应活化能,加快反应速率,故A正确;
B.其它条件不变时,若扩大容器容积,则v正减小,v逆减小,故B错误;
C.反应体系中各物质均为气体,根据质量守恒定律容器内混合气体的质量不变,容器的容积不变,混合气体的密度不随反应的进行而变化,密度不随时间改变时,不能说明反应已达平衡,故C错误;
故答案为:A;
③393K下,该反应达到平衡后,再向容器中按n(CO2):n(H2)=1:3投入CO2和H2,当于增大压强,该反应正反应为气体物质的量减小的反应,增大压强,2CO2(g)+6H2(g)C2H4(g)+4H2O(g)平衡正向移动,则将变小,故答案为:变小;
(3)①25℃时,N2H4在水中第一步电离方程式N2H4+H2ON2H+OH-,故答案为:N2H4+H2ON2H+OH-;
②25℃时,N2H4在水中的第二步电离常数值为POH=9.3时,N2H、N2H浓度相等,Ka2= =c(OH-)= 10-9.3,故答案为:10-9.3;
③工业上利用NH3制备联氨(N2H4),在阳极氨气失电子,发生氧化反应,阳极电极反应式:2NH3-2e-+O2-=N2H4+H2O,故答案为:2NH3-2e-+O2-=N2H4+H2O。
21. △S>0 B CH4和CO2按1:1投料发生反应Ⅰ时转化率相等,CO2还发生反应Ⅱ,所以平衡转化率大于CH4 0.39 AC CD 6.25
【详解】(1)对于反应a:CH4(g)+CO2(g)═2CO(g)+2H2(g)△H1>0,△S>0,则反应a在一定条件下能够自发进行的原因是△S>0;
较低的压强可使平衡正向移动,较高温度能加快合成速率,提高生产效率,该反应工业生产适宜的温度和压强为高温低压,故选B;
(2)①CH4与CO2按1:1投料发生反应a时转化率相等,但CO2还发生反应b,所以CO2的平衡转化率大于CH4的平衡转化率;
②反应a,设起始时充入0.1mol/L的CH4与CO2,
,
α(CO2)=1mol/L×70%=0.7mol/L,则反应Ⅱ△c(CO2)=0.7mol/L-0.6mol/L=0.1mol/L,
反应b:
K=(1.3×0.1)/ (0.3×1.1) =0.39;
(3)A.由图可知,随着温度升高,平衡时甲醇的物质的量在减小,所以升温平衡向逆反应方向移动,则正反应为放热反应,故A正确;
B.由图可知,作一条等温线,因为该反应为气体体积减小的反应,压强越大,平衡时甲醇的物质的量也越大,所以p1>p2>p3,故B错误;
C.由图可知,M点对应的甲醇产量为0.25mol,则消耗CO2为0.25mol,转化率为0.25/1×100%=25%,故C正确;
D.由图可知,在P2及512 K时,N点甲醇的物质的量还小于平衡时的量,所以应该正向进行,则v(正)>v(逆),故D错误;
故选:AC;
(4)①A.依据物料守恒可得:c(NH)+c(NH3•H2O)=c(HCO)+c(H2CO3)+c(CO),溶液的pH=8,呈碱性,c(OH-)>c(H+),则c(NH)+c(NH3·H2O)+c(H+)
C.依据物料守恒关系:①c(NH)+c(NH3•H2O)=c(HCO)+c(H2CO3)+c(CO),依据电荷守关系:②c(NH)+c(H+)=c(HCO)+c(OH-)+2c(CO),①-②得:c(H2CO3)-c(CO)-c(NH3•H2O)=c(OH-)-c(H+)=(10-6-10-8) mol•L-1=9.9×10-7 mol•L-1,故C正确;
D.滤液中存在电荷守恒:c(Na+)+c(H+)+c(NH)=c(Cl-)+c(OH-)+c(HCO)+2c(CO),由于滤液中溶质为氯化铵和NaCl,则c(Na+)<c(Cl-),所以c(H+)+c(NH)>c(OH-)+c(HCO)+2c(CO),故D正确;
故答案为:CD;
②c(H2CO3):c(CO)=[ c(H2CO3)×c2(H+)×c(HCO)]:[c(CO)×c2(H+)×c(HCO)]= c2(H+)/ Ka1•Ka2=(10−8)2/4×10−7×4×10−11=6.25。
22. 165 总反应的平均速率由慢反应决定,I2为慢反应的反应物,增大I2的浓度,慢反应的反应速率增大,则总反应的反应速率增大 AD 25% 小 由图可知,当X一定时,随着Y值的增大,组分中φ(CH3OH)减小,由信息可知,该反应为放热反应,升温平衡逆向移动,组分中φ(CH3OH)减小,二者一致,故Y轴表示温度
【详解】(1)根据盖斯定律,i-ii得到目标反应式的ΔH=ΔH1-ΔH2=[(-133)-(-100)]kJ/mol=-33 kJ/mol,该反应为放热反应,逆反应的活化能=正反应的活化能+33 kJ/mol=132 kJ/mol+33 kJ/mol=165 kJ/mol,故答案为165 kJ/mol;
(2)化学反应的速率由慢反应的速率决定,根据题中所给信息,反应①为慢反应,CH3CHO(aq)=CH4(g)+CO(g)的反应速率由①决定,增加I2的浓度,慢反应速率增大,则总反应速率增大;故答案为总反应的平均速率由慢反应决定,I2为慢反应的反应物,增大I2的浓度,慢反应的反应速率增大,则总反应的反应速率增大;
(3)①A.根据化学平衡状态的定义,CO的体积分数保持不变,说明反应达到平衡,故A符合题意;
B.投入量的比值等于化学计量数的比值,从反应开始到平衡,CO和H2的转化率相等,故B不符合题意;
C.用不同物质的反应速率表示反应达到平衡,要求反应方向是一正一逆,且反应速率之比等于化学计量数之比,v逆(CH3OH)=2v逆(H2)时两个反应的方向都是向逆反应方向进行,因此v逆(CH3OH)=2v逆(H2)不能说明反应达到平衡,故C不符合题意;
D.利用,组分都是气体,混合气体总质量保持不变,该反应气体物质的量减少,因此当气体平均相对分子质量保持不变,说明反应达到平衡,故D符合题意;
答案为AD;
②建立:,平衡时,M点甲醇的体积分数为10%,即有,解得x=0.25mol,CO的转化率为25%;故答案为25%;
③根据图象,当Y一定时,X轴从0~d甲醇的体积分数增大,即a点的数值比b点小;根据图象,可知,当X一定时,随着Y值的增大,组分中φ(CH3OH)减小,由信息可知,该反应为放热反应,升温平衡逆向移动,组分中φ(CH3OH)减小,二者一致,故Y轴表示温度;故答案为小;由图可知,当X一定时,随着Y值的增大,组分中φ(CH3OH)减小,由信息可知,该反应为放热反应,升温平衡逆向移动,组分中φ(CH3OH)减小,二者一致,故Y轴表示温度;
(4)根据溶液呈现电中性,得出c(H+)+2c(Ba2+)=c(OH-)+c(CH3COO-),因为2c(Ba2+)=c(CH3COO-),因此c(H+)=c(OH-)=10-7mol/L, 2c(Ba2+)=c(CH3COO-)=mol/L,根据物料守恒,c(CH3COOH)+c(CH3COO-)=mol/L,推出c(CH3COOH)= mol/L,根据电离平衡常数的表达式Ka==;故答案为。
23. CH2=CHCH2Cl(g)+HCl(g)→CH2ClCHClCH3(g) △H= - 33 kJ·mol-1 40% CO2+4H2CH4+ 2H2O 因为△G=△H-T△S>0,所以不可行(或者△H>0,△S>0, 任何温度不能自发) 1.6×10-5
【详解】(1)①已知:i.CH2=CHCH3(g)+Cl2(g)→CH2ClCHClCH3(g) ΔH=-133kJ·mol-1
ii.CH2=CHCH3(g)+Cl2(g)→CH2=CHCH2Cl(g)+HCl(g) ΔH=-100kJ·mol-1
根据盖斯定律,由i-ii得CH2=CHCH2Cl(g)+HCl(g)→CH2ClCHClCH3(g) △H= -100kJ·mol-1-(-133kJ·mol-1)=- 33 kJ·mol-1,故答案为:CH2=CHCH2Cl(g)+HCl(g)→CH2ClCHClCH3(g) △H= - 33 kJ·mol-1;
②△H=Ea正-Ea逆,则Ea(逆)=Ea正-△H=132kJ•mol-1-(-33kJ•mol-1)=165kJ•mol-1,故答案为:;
(2)①反应热与参加反应的物质的物质的量成正比,由热化学方程式知,3mol氢气完全转化时放出热量为49.4kJ热量,则测得放出热量19.76kJ时,H2的转化率为;
②用三段式法计算得:
,;
(3)①根据图示中箭头方向知,反应物为CO2、H2,生成物为CH4、H2O,故答案为:CO2+4H2CH4+ 2H2O;
②有人提出中间产物CO的处理,用反应2CO(g)=2C(s)+O2(g) ΔH>0来消除CO的污染,因为△G=△H-T△S>0,所以不可行(或者△H>0,△S>0,任何温度不能自发);
(4)T℃,HCOOH与CH3COONa溶液反应:HCOOH+CH3COO-⇌HCOO-+CH3COOH,该反应的K=12.5,即,则该温度下醋酸的电离常数Ka(CH3COOH)=,故答案为:1.6×10-5。
24. 丙>甲>乙 135 > 阴极
【详解】(1) ①
②
利用盖斯定律,将反应①-②×2,即得第二步反应为,其反应热为。答案为:;;
(2)在初始体积与温度相同的条件下,甲、乙、丙中均按、投料,比较三个容器中达到平衡时的转化率大小,以甲为参照物,乙相当于甲升高温度,平衡逆向移动,SO2的转化率降低,丙相当于甲加压,平衡正向移动,SO2的转化率增大,所以SO2的转化率从大到小的顺序为丙>甲>乙。答案为:丙>甲>乙;
(3)在T℃和下,向容器丙中,加入和,达到平衡后的转化率为60%。可建立如下三段式:
则=135;相同条件下,若按、、进行投料,浓度商Qp==30<135,表明反应正向进行,所以反应开始时>。答案为:135;>;
(4)已知的电离平衡常数为,,则的水解常数Kh2==6.49×10-13<,所以溶液中以的电离为主,从而得出含S元素粒子浓度由大到小的顺序为。由图中可知,A电极生成H2,则表明得电子,从而表明A电极为阴极,B电极为阳极;在阳极,失电子生成和H+,电极反应式为。答案为:;阴极;。
【点睛】在阳极,有部分与H+作用,从而生成二氧化硫气体等。
25. -4 极性 B、D 因为用同一物质表示的正逆反应速率相等 提高氯气的通入量、及时分离SCl2(g)、增大压强等措施(答案合理即可) 5 1×10-11mol·L-1
【详解】(1)根据S4结构可知S4(s)内有4个S-S键,则S4(s)+ 4Cl2(g)=4SCl2(g) △H=(4×266+4×243-4×2×255)kJ/mol=-4 kJ.mol-1,故答案为:-4;
(2)根据S2Cl2分子空间结构可知, S2Cl2结构与H2O2相似,是由极性键组成的极性分子;S2Cl2水解产生无色有刺激性气味的气体二氧化硫和淡黄色沉淀S,根据元素守恒还生成氯化氢,该反应的化学方程式为;
(3) ①S2Cl2 (g)+ Cl2(g)2SCl2(g),当同种物质正逆反应速率相等时,反应到达平衡,而化学反应速率之比等于化学计量数之比,所以当Cl2的消耗速率的两倍与SCl2的消耗速率相等时,该反应到达平衡,图中在250 ℃时,B、D两点对应的状态下,换成同一物质表示的正、逆反应速率相等,所以达到平衡状态的有B、D两点,故答案为:B、D;因为用同一物质表示的正逆反应速率相等;
②对于反应S2Cl2 (g)+ Cl2(g)2SCl2(g)来说,是气体分子数减小的放热反应,若要提高SCl2产率,则需使该反应平衡向正反应方向移动,可采用提高氯气的通入量、及时分离SCl2(g)、增大压强等措施(答案合理即可);
③应达到平衡时S2Cl2 的转化率是x,列出三段式:,反应的平衡常数K= ===;
(4)已知Ka(CH3COOH)=,则c(H+)=1×10-5mol/L,此时溶液pH=5;Ka1(H2S)×Ka2(H2S) =×= =1.0×10-7×1.0×10-14,其中c(H+)=1×10-5mol/L,c(H2S)=0.10mol/L,则c(S2-)=1.0×10-12 mol/L,此时Ksp(ZnS)=1.0×10-23=c(Zn2+)×c(S2-),则计算得出c(Zn2+)=1×10-11mol·L-1,故答案为:5;1×10-11mol·L-1。
26. C6H5Cl(g)+H2S(g) C6H5SH(g)+HCl(g) ΔH=-16.8 kJ/mol 0.002mol/(L·min) D P3>P2>P1 > 及时分离出产物H2或S2 1
【详解】(1)根据图象,推出①C6H5Cl(g)+H2S(g)C6H6(g)+HCl(g)+S8(g) =-45.8kJ·mol-1,②C6H5Cl(g) C6H6(g)+S8(g) =-(104-75)kJ·mol-1=-29kJ·mol-1,①-②得出C6H5Cl(g)+H2S(g) C6H5SH(g)+HCl(g) =-16.8kJ·mol-1;故答案为:C6H5Cl(g)+H2S(g) C6H5SH(g)+HCl(g) =-16.8kJ·mol-1;
(2)①达到平衡后水蒸气的物质的量为0.01mol,则消耗H2S的物质的量为0.01mol,根据化学反应速率的数学表达式,推出v(H2S)==2×10-3mol/(L·min);故答案为:2×10-3mol/(L·min);
②A.组分都是气体,因此气体总质量保持不变,该反应条件是恒容状态,容器的体积保持不变,因此密度始终保持不变,即密度不变,不能作为该反应达到平衡的标志,故A不符合题意;
B.消耗H2S和生成COS都是向正反应方向进行,因此v消耗(H2S)=v生成(COS),不能说明该反应达到平衡,故B不符合题意;
C.反应前后气体系数之和相等,即反应前后气体压强始终保持不变,压强不变,不能说明反应达到平衡,故C不符合题意;
D.开始时投入H2S和CO2物质的量不同,随着反应进行,剩余H2S和CO2物质的量之比不断变化,当H2S和CO2物质的量之比不再变化,即H2S和CO2质量之比不再变化时,反应达到平衡,故D符合题意;
答案为:D;
(3)①作等温线,根据反应方程式,增大压强,平衡向逆反应方向进行,H2S的平衡转化率降低,即P3>P2>P1;随着温度升高H2S平衡转化率增大,根据勒夏特列原理,正反应方向为吸热反应,即>0;故答案为:P3>P2>P1;>;
②根据勒夏特列原理,可以采取措施及时分离出产物H2或S8,故答案为:及时分离出产物H2或S8;
③令H2S起始物质的量为amol,建立三段式:,H2的分压为P3×MPa,S2的分压为P3×MPa,H2S的分压为P3×MPa,利用平衡常数的数学表达式,Kp=P3=5MPa,代入上式,得出Kp=1MPa,故答案为:1。
27. 高温 丙>甲>乙 CD > A
【详解】(1)由盖斯定律可知,;CaCO3(s)=CaO(s)+CO2(g)△H>0,时能自发进行,由于,,所以要使该反应能自发进行,应在高温下进行;为酸性氧化物,氨水溶液呈碱性,所以过量的与浓氨水反应生成和,则其离子方程式为:故答案为:;高温;;
(2) I.乙因为是绝热容器,该反应为放热反应,所以相对于甲,乙中温度比甲高,升高温度平衡逆向移动,的转化率降低;比较甲、丙,该反应为气体体积减小的反应,丙在恒压的条件下,甲相对于丙,相对于减小压强,平衡逆向移动,的转化率降低,综上所述,三个容器中的转化率从大到小的顺序为:丙>甲>乙,故答案为:丙>甲>乙;
IIA.甲为恒温恒容的密闭容器,所以温度一直保持不变,则温度不变不能用于判断该反应是否处于平衡状态,故A不选;
B.甲、乙均为恒容密闭容器,又由于该反全为气体参加的反应,所以在恒容的密闭容器中密度始终保持不变,故B不选;
C.在恒容的密闭容器中,该反应为非等体积反应,所以压强不变时,该反应处于平很状态,故选C;
D.一定条件下,当时,反应体系中所有参加反应的物质的物质的量或浓度保持恒定不变,则O2浓度保持不变可用于判断该反应是否处于不平衡状态,故选D;
故答案选CD;
III 丙为恒温恒压的密闭体系,所以相同温度下在容器丙中分别投入4molSO2、2molO2和2molSO2、1molO2进行反应平衡不发生移动;则所释放的能量前者为后者的两倍;若前者反应温度为400℃,后者反应温度为500℃,且该反应为放热反应,所以平衡逆向移动,则前者释放的能量大于后者的两倍,故答案为:>;
(3)已知酸性H2SO3>>HSO>,水杨酸(),则根据强酸制备弱酸可知,水杨酸()与亚硫酸钠溶液反应生成与NaHSO3,故选A;
(4)时,,当时,,,故答案为:。
28. -4 2S2Cl2+2H2O=SO2↑+3S↓+4HCl 1:3 B B Li+Cl-+e-=LiCl↓ (或Li+e-=Li+)
【详解】(1)根据S4结构可知S4(s)内有4个S-S键,则S4(s)+ 4Cl2(g)=4SCl2(g) △H=(4×266+4×243-4×2×255)kJ/mol=-4 kJ/mol,所以答案为-4;
(2)S2Cl2的结构式为Cl-S-S-Cl,所以其电子式是:;
(3)S2Cl2与水发生反应,产生无色有刺激性气味的气体,同时有淡黄色沉淀生成,说明生成了S和SO2,其他元素化合价不变,则此反应的化学反应方程式为:2S2Cl2+2H2O=SO2↑+3S↓+4HCl;该反应中一个S上升,被氧化,三个S下降,被还原,所以该反应中被氧化和被还原的元素的质量之比是1:3;
(4)①S2Cl2 (g)+ Cl2(g)2SCl2(g),当同种物质正逆反应速率相等时,反应到达平衡,而化学反应速率之比等于化学计量数之比,所以当Cl2的消耗速率的两倍与SCl2的消耗速率相等时,该反应到达平衡,图中只有B点符合,所以A、B、C三点中B点到达平衡。
②S2Cl2 (g)+ Cl2(g)2SCl2(g) △H<0,正反应为放热且气体分子总数不变的反应。
A.该反应为放热反应,升高体系的温度,平衡逆向移动,S2Cl2平衡转化率下降,A错误;
B.增大氯气的物质的量,平衡正向移动,S2Cl2平衡转化率增大,B正确;
C.该反应为气体分子总数不变的反应,压缩容器的体积,平衡不移动,S2Cl2平衡转化率不变;
D.催化剂不能改变平衡转化率,D错误;
答案选B;
③应达到平衡时S2Cl2 的转化率是a,列出三段式:,反应的平衡常数K= ==。
(5)锂做负极,失电子,生成氯化锂,所以负极电极反应式为:Li+Cl-+e-=LiCl (或Li+e-=Li+)。
29. CO(g)+H2O(g)CO2(g)+H2(g) △H=—41.2kJ·mol-1 SO2+2NH3·H2O=(NH4)2SO3+H2O 2NH+Ca2++2OH-+SO=CaSO3↓+2NH3·H2O 1×10-1.8 c(Na+)>c(SO)>c(HSO)>c(OH-)=c(H+)
【详解】Ⅰ.(1)由盖斯定律可知,可得CO(g)与H2O(g)反应生成CO2(g)、H2(g)的方程式CO(g)+H2O(g)CO2(g)+H2(g),则△H==—41.2kJ·mol-1,反应的热化学方程式为CO(g)+H2O(g)CO2(g)+H2(g) △H=—41.2kJ·mol-1,故答案为:CO(g)+H2O(g)CO2(g)+H2(g) △H=—41.2kJ·mol-1;
(2) ①用足量氨水吸收二氧化硫的反应为二氧化硫与氨水反应生成亚硫酸铵和水,反应的化学方程式为SO2+2NH3·H2O=(NH4)2SO3+H2O,故答案为:SO2+2NH3·H2O=(NH4)2SO3+H2O;
②用足量氨水吸收二氧化硫的反应后,再加入熟石灰发生的反应为亚硫酸铵与氢氧化钙反应生成亚硫酸钙沉淀和一水合氨,反应离子方程式为2NH+Ca2++2OH-+SO=CaSO3↓+2NH3·H2O,故答案为:2NH+Ca2++2OH-+SO=CaSO3↓+2NH3·H2O;
③由反应的方程式可知,反应的平衡常数K===,故答案为:;
Ⅱ.(1)亚硫酸为二元弱酸,一级电离常数大于二级电离常数,由图可知,当c(H2SO3)=c(HSO)时,lg=0,溶液pH为1.8,当c(SO)=c(HSO)时,lg=0,溶液pH为6.9,则曲线M表示溶液的pH与lg的关系,Ka1(H2SO3)= = c(H+)=1×10-1.8,故答案为:1×10-1.8;
(2) 当滴加NaOH溶液使混合溶液呈中性时,反应得到亚硫酸钠和亚硫酸氢钠的混合溶液,则溶液中各离子浓度大小关系为c(Na+)>c(SO)>c(HSO)>c(OH-)=c(H+),故答案为:c(Na+)>c(SO)>c(HSO)>c(OH-)=c(H+);
Ⅲ.设混合气体的物质的量为100mol,则混合气体中含有mmol二氧化硫、2mmol氢气和qmol氦气,由温度t、压强P条件下进行反应,反应达到平衡时H2转化率为α可建立如下三段式:
由P1:P2=n1:n2可得:,解得平衡时P平=,则平衡时氢气、二氧化硫和水蒸气的平衡分压分别为=、=、=,平衡常数Kp==,故答案为:。
30.(1)3d64s2
(2) 8 4
(3) 降低反应活化能
(4) 由Fe3+水解产物的颜色所致 向该溶液中加HNO3
【详解】(1)Fe为26号元素,所以基态Fe原子的价层电子排布式为3d64s2,故答案为:3d64s2;
(2)由图可知,晶胞A中Fe的配位数为8,所以每个Fe原子紧邻的原子数为8。根据原子均摊法,每个晶胞B中含Fe原子数为,故答案为:8;;4
(3)由图可知,1mol N2和3mol H2反应时,放出的热量为(a-b)kJ,所以该反应的热化学方程式。铁触媒是反应的催化剂,作用是降低反应活化能,故答案为:;降低反应活化能;
(4)①由于Fe3+水解产物的颜色导致溶液Ⅰ却呈黄色,为了能观察到溶液Ⅰ中的浅紫色,可向该溶液中加HNO3,抑制铁离子的水解,故答案为:由Fe3+水解产物的颜色所致;向该溶液中加HNO3;
②向溶液Ⅱ中加入NaF后,溶液颜色由红色转变为无色,说明和氟离子转化为,其离子方程式为,和相减得到,所以平衡常数为,故答案为:;。
上海高考化学三年(2020-2022)模拟题分类汇编-60化学反应的热效应(2): 这是一份上海高考化学三年(2020-2022)模拟题分类汇编-60化学反应的热效应(2),共29页。试卷主要包含了单选题,填空题,原理综合题,实验题等内容,欢迎下载使用。
上海高考化学三年(2020-2022)模拟题分类汇编-55化学反应的热效应(2): 这是一份上海高考化学三年(2020-2022)模拟题分类汇编-55化学反应的热效应(2),共35页。试卷主要包含了单选题,原理综合题,结构与性质等内容,欢迎下载使用。
天津高考化学三年(2020-2022)模拟题分类汇编-26化学反应的热效应(4): 这是一份天津高考化学三年(2020-2022)模拟题分类汇编-26化学反应的热效应(4),共33页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。