- 第七章 随机变量及其分布(A卷·知识通关练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教A版2019) 试卷 1 次下载
- 第八章 成对数据的统计分析(A卷·知识通关练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教A版2019) 试卷 0 次下载
- 第八章 成对数据的统计分析(B卷·能力提升练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教A版2019) 试卷 0 次下载
- 第六章 计数原理(A卷·知识通关练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教A版2019) 试卷 4 次下载
- 第六章 计数原理(B卷·能力提升练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教A版2019) 试卷 2 次下载
第七章 随机变量及其分布(B卷·能力提升练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教A版2019)
展开班级 姓名 学号 分数
第七章 随机变量及其分布(B卷·能力提升练)
(时间:120分钟,满分:150分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2023春·江苏扬州·高三统考开学考试)已知一组数据的平均数是2,方差是3,则对于以下数据: ,,,,,1,2,3,4,5下列选项正确的是( )
A.平均数是3,方差是7 B.平均数是4,方差是7
C.平均数是3,方差是8 D.平均数是4,方差是8
2.(2023·江苏南通·统考一模)已知随机变量服从正态分布,有下列四个命题:
甲:;
乙:;
丙:;
丁:
如果只有一个假命题,则该命题为( )
A.甲 B.乙 C.丙 D.丁
3.(2023春·河南焦作·高二统考开学考试)已知甲箱中有6个篮球,2个足球,乙箱中有5个篮球,3个足球.先从甲箱中随机取出一球放入乙箱,分别用事件表示由甲箱取出的球是篮球、足球,再从乙箱中随机取出两球,用事件B表示“由乙箱取出的两球都为篮球”,则( )
A. B. C. D.
4.(2023·高一课时练习)抛三枚均匀的硬币,其中恰好有两枚正面朝上的概率为( )
A. B. C. D.
5.(2023秋·湖南长沙·高二长郡中学校考期末)已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从放入球的盒子中任取一个球,则第二次抽到3号球的概率为( )
A. B. C. D.
6.(2023·全国·模拟预测)某人连续两次对同一目标进行射击,若第一次击中目标,则第二次也击中目标的概率为,若第一次未击中目标,则第二次击中目标的概率为,已知第一次击中目标的概率为,则在第二次击中目标的条件下,第一次也击中目标的概率为( )
A. B. C. D.
7.(2023春·浙江温州·高三统考开学考试)某医院对10名入院人员进行新冠病毒感染筛查,若采用单管检验需检验10次;若采用10合一混管检验,检验结果为阴性则只要检验1次,如果检验结果为阳性,就要再全部进行单管检验.记10合一混管检验次数为,当时,10名人员均为阴性的概率为( )
A.0.01 B.0.02 C.0.1 D.0.2
8.(2023春·广东·高三统考开学考试)在概率论中,全概率公式指的是:设为样本空间,若事件两两互斥,,则对任意的事件,有.若甲盒中有2个白球、2个红球、1个黑球,乙盒中有个白球、3个红球、2个黑球,现从甲盒中随机取出一个球放入乙盒,再从乙盒中随机取出一个球,若从甲盒中取出的球和从乙盒中取出的球颜色相同的概率大于等于,则的最大值为( )
A.4 B.5 C.6 D.7
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.(2023·湖南·模拟预测)已知某批零件的质量指标单位:毫米服从正态分布,且,现从该批零件中随机取件,用表示这件产品的质量指标值不位于区间的产品件数,则( )
A.P(25.35<<25.45)=0.8 B.E(X)=2.4
C.D(X)=0.48 D.
10.(2023秋·江西上饶·高二统考期末)2022年冬奥会在北京举办,为了弘扬奥林匹克精神,上饶市多所中小学开展了冬奥会项目科普活动.为了调查学生对冬奥会项目的了解情况,在本市中小学中随机抽取了10所学校中的部分同学,10所学校中了解冬奥会项目的人数如图所示:
若从这10所学校中随机选取3所学校进行冬奥会项目的宣讲活动,记为被选中的学校中了解冬奥会项目的人数在30以上的学校所数,则下列说法中正确的是( )
A.的可能取值为0,1,2,3 B.
C. D.
11.(2023·浙江·永嘉中学校联考模拟预测)新型冠状病毒肺炎(Corona Virus Disease2019,COVID-19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,是指2019新型冠状病毒感染导致的肺炎.用核酸检测的方法可以诊断是否患有新冠,假设,,其中随机事件表示“某次核酸检测被检验者阳性”,随机事件表示“被检验者患有新冠”,现某人群中,则在该人群中( )
A.每100人必有1人患有新冠
B.若,则事件与事件相互独立
C.若某人患有新冠,则其核酸检测为阳性的概率为0.999
D.若某人没患新冠,则其核酸检测为阳性的概率为0.001
12.(2023春·河北石家庄·高三校联考开学考试)某计算机程序每运行一次都随机出现一个n位二进制数,其中ai,若在A的各数位上出现0和1的概率均为,记,则当程序运行一次时( )
A. B.
C.X的数学期望 D.X的方差
三、填空题:本题共4小题,每小题5分,共20分。
13.(2023春·浙江·高三开学考试)随着城市经济的发展,早高峰问题越发严重,上班族需要选择合理的出行方式.某公司员工小明上班出行方式由三种,某天早上他选择自驾,坐公交车,骑共享单车的概率分别为,而他自驾,坐公交车,骑共享单车迟到的概率分别为,结果这一天他迟到了,在此条件下,他自驾去上班的概率是__________.
14.(2023秋·河南三门峡·高三统考期末)一位大爷公园摆摊,吸引游客玩中奖游戏.玩一局只需交费10元,然后在一个装了红、绿、蓝各8个珠子的袋子中摸出12个珠子,数出不同颜色珠子个数,获得相应的奖金,比如摸出的12个珠子里,颜色最多的珠子有8个,颜色次多的珠子有4个,还有一种颜色没有,就叫840,玩家会获奖110元!如果三种颜色珠子个数是831,就能获奖20元,如果是444,就能获奖11元等等.某同学根据大爷提供的所有取球规则以及对应奖金设置,利用所学知识计算了部分数据,如图所示.
取球结果 | 奖金(元) | 组合数 | 中奖概率 | 奖金期望(元) |
840 | 110 | 420 | 0.02% | 0.02 |
831 | 20 | 2688 | 0.10% | 0.02 |
822 | 20 | 2352 | 0.09% | 0.02 |
750 | 30 | 2688 | 0.10% | 0.03 |
741 | 12 | ▲ | ▲ | ▲ |
732 | 12 | 75264 | 2.78% | 0.33 |
660 | 30 | 2352 | 0.09% | 0.03 |
651 | 11 | 75264 | 2.78% | 0.31 |
642 | 11 | 329280 | 12.18% | 1.34 |
633 | 11 | 263424 | 9.74% | 1.07 |
552 | 11 | 263424 | 9.74% | 1.07 |
543 | 0 | ▲ | ▲ | ▲ |
444 | 11 | 343000 | 12.68% | 1.39 |
根据以上这些数据(数据为近似后保留两位小数的结果),可以计算出一位游客每玩一局,这位大爷可以赚取约______元(保留两位小数).
15.(2023·甘肃兰州·校考一模)袋中装有3个红球2个白球,从中随机取球,每次一个,直到取得红球为止,则取球次数的数学期望为_____.
16.(2023秋·江苏·高三统考期末)在概率论中常用散度描述两个概率分布的差异.若离散型随机变量的取值集合均为,则的散度.若,的概率分布如下表所示,其中,则的取值范围是__________.
0 | 1 | |
0 | 1 | |
四、解答题:本题共4小题,共48分。解答应写出文字说明、证明过程或演算步棸。
17.(12分)
(2023春·湖南·高三校联考阶段练习)在数学探究实验课上,小明设计了如下实验:在一个盒子中装有蓝球、红球、黑球等多种不同颜色的小球,一共有偶数个小球,现在从盒子中一次摸一个球,不放回.
(1)若盒子中有6个球,从中任意摸两次,摸出的两个球中恰好有一个红球的概率为.
①求红球的个数;
②从盒子中任意摸两次球,记摸出的红球个数为,求随机变量的分布列和数学期望.
(2)已知盒子中有一半是红球,若“从盒子中任意摸两次球,至少有一个红球”的概率不大于,求盒子中球的总个数的最小值.
18.(12分)
(2023秋·辽宁营口·高二统考期末)某一部件由4个电子元件按如图方式连接而成,4个元件同时正常工作时,该部件正常工作,若有元件损坏则部件不能正常工作,每个元件损坏的概率为,且各个元件能否正常工作相互独立.
(1)当时,求该部件正常工作的概率;
(2)使用该部件之前需要对其进行检测,有以下2种检测方案:
方案甲:将每个元件拆下来,逐个检测其是否损坏,即需要检测4次;
方案乙:先将该部件进行一次检测,如果正常工作则检测停止,若该部件不能正常工作则需逐个检测每个元件;
进行一次检测需要花费a元.
①求方案乙的平均检测费用;
②若选方案乙检测更划算,求p的取值范围.
19.(12分)
(2023秋·河北保定·高三统考期末)根据《全国普通高等学校体育课程教学指导纲要》第六条:普通高等学校要对三年级及以上学生开设体育选修课.某学院大三、大四年级的学生可以选择羽毛球、健美操、乒乓球、排球等体育选修课程,规定每位学生每学年只能从中选修一项课程,大三选过的大四不能重复选,每项课程一学年完成共计80学时.现在在该学院进行乒乓球课程完成学时的调查,已知该学院本学年选修乒乓球课程大三与大四学生的人数之比为3:2,现用分层随机抽样的方法从这两个年级选修乒乓球课的数据中随机抽取100位同学的乒乓球课程完成学时,得到如下频率分布表:
成绩(单位:学时) | |||||
频数(不分年级) | 3 | x | 21 | 35 | 33
|
频数(大三年级) | 2 | 6 | 16 | y | 16 |
(1)求,的值;
(2)在这100份样本数据中,从完成学时位于区间的大四学生中随机抽取2份,记抽取的这2份学时位于区间的份数为,求的分布列与数学期望;
(3)已知该学院大三、大四学生选修乒乓球的概率为25%,本学年这两个年级体育选修课程学时位于的学生占两个年级总体的16%.现从该学院这两个年级中任选一位学生,若此学生本学年选修的体育课程学时位于,求他选修的是乒乓球的概率(以样本数据中完成学时位于各区间的频率作为学生完成学时位于该区间的概率,精确到0.0001).
20.(12分)
(2023·全国·模拟预测)年卡塔尔世界杯采用的“半自动越位定位技术”成为本届比赛的一大技术亮点,该项技术的工作原理是将若干个传感器芯片内置于足球中,每个传感芯片都可以高频率定位持球球员,以此判断该球员是否越位.为了研究该技术的可靠性,现从生产的传感芯片中随机抽取个,将抽取到的传感芯片的最高频率(单位:)统计后,得到的频率分布直方图如图所示:
(1)求这批芯片的最高频率的平均值(同一组中的数据用该组区间的中点值作代表)和方差;
(2)根据频率分布直方图,可以近似认为这批传感芯片的最高频率服从正态分布.用样本平均数作为的估计值,用样本标准差作为的估计值,试估计,从这批传感芯片中任取一个,其最高频率大于的概率;
(3)若传感芯片的最高频率大于,则该传感志片是可精确定位的,现给每个足球内置个传感芯片,若每个足球中可精确定位的芯片数不少于一半,则该足球可以满足赛事要求,能够精确判定球员是否越位,否则就需要增加裁判数量,通过助理裁判指证、慢动作回放等方式进行裁定.已知每个传感芯片的生产和维护费用约为万元/场,因足球不可精确定位而产生的一次性人力成本为万元/场,从单场比赛的成本考虑,每个足球内置多少个芯片,可以让比赛的总成本最低?
附:,,.
21.(2023秋·山东日照·高二统考期末)某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.
(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;
(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.
22.(2023秋·河北邢台·高三统考期末)灯带是生活中常见的一种装饰材料,已知某款灯带的安全使用寿命为5年,灯带上照明的灯珠为易损配件,该灯珠的零售价为4元/只,但在购买灯带时可以以零售价五折的价格购买备用灯珠,该灯带销售老板为了给某顾客节省装饰及后期维护的支出,提供了150条这款灯带在安全使用寿命内更换的灯珠数量的数据,数据如图所示.以这150条灯带在安全使用寿命内更换的灯珠数量的频率代替1条灯带更换的灯珠数量发生的概率,若该顾客买1盒此款灯带,每盒有2条灯带,记X表示这1盒灯带在安全使用寿命内更换的灯珠数量,n表示该顾客购买1盒灯带的同时购买的备用灯珠数量.
(1)求的分布列;
(2)若满足的n的最小值为,求;
(3)在灯带安全使用寿命期内,以购买替换灯珠所需总费用的期望值为依据,比较与哪种方案更优.