终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学一轮复习考点梳理+单元突破练习专题22 二次函数(教师版)

    立即下载
    加入资料篮
    中考数学一轮复习考点梳理+单元突破练习专题22 二次函数(教师版)第1页
    中考数学一轮复习考点梳理+单元突破练习专题22 二次函数(教师版)第2页
    中考数学一轮复习考点梳理+单元突破练习专题22 二次函数(教师版)第3页
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习考点梳理+单元突破练习专题22 二次函数(教师版)

    展开

    这是一份中考数学一轮复习考点梳理+单元突破练习专题22 二次函数(教师版),共41页。试卷主要包含了二次函数的概念等内容,欢迎下载使用。
    专题22 二次函数
    知识点一:二次函数的基本概念与特征
    1.二次函数的概念:一般地,形如(是常数,)的函数,叫做
    二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二
    次函数的定义域是全体实数.
    2. 二次函数的结构特征:
    ⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
    ⑵ 是常数,是二次项系数,是一次项系数,是常数项.
    知识点二:二次函数的基本形式及其性质
    1.的性质:(a 的绝对值越大,抛物线的开口越小)
    a的符号
    开口方向
    顶点坐标
    对称轴
    性质


    向上


    时,随的增大而增大;时,随的增大而减小;时,有最小值.

    向下


    时,随的增大而减小;时,随的增大而增大;时,有最大值.
    2. 的性质:(上加下减)
    的符号
    开口方向
    顶点坐标
    对称轴
    性质

    向上


    时,随的增大而增大;时,随的增大而减小;时,有最小值.

    向下


    时,随的增大而减小;时,随的增大而增大;时,有最大值.
    3. 的性质:(左加右减)
    a的符号
    开口方向
    顶点坐标
    对称轴
    性质

    向上

    X=h
    时,随的增大而增大;时,随的增大而减小;时,有最小值.

    向下

    X=h
    时,随的增大而减小;时,随的增大而增大;时,有最大值.
    4. 的性质:
    的符号
    开口方向
    顶点坐标
    对称轴
    性质

    向上

    X=h
    时,随的增大而增大;时,随的增大而减小;时,有最小值.

    向下

    X=h
    时,随的增大而减小;时,随的增大而增大;时,有最大值.
    知识点三:二次函数图象的平移
    1. 平移步骤:
    方法1:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;
    ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

    2. 平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.
    方法2:
    ⑴沿轴平移:向上(下)平移个单位,变成
    (或)
    ⑵沿轴平移:向左(右)平移个单位,变成(或)
    知识点四:二次函数与的比较
    从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.
    知识点五一:二次函数图象的画法
    五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).
    画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.
    知识点六:二次函数的性质
    1. 当时,抛物线开口向上,对称轴为,顶点坐标为.
    当时,随的增大而减小;
    当时,随的增大而增大;
    当时,有最小值.
    2. 当时,抛物线开口向下,对称轴为,顶点坐标为.
    当时,随的增大而增大;
    当时,随的增大而减小;
    当时,有最大值.
    知识点七:二次函数解析式的表示方法
    1. 一般式:(,,为常数,);
    2. 顶点式:(,,为常数,);
    3. 两根式:(,,是抛物线与轴两交点的横坐标).
    注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写
    成交点式,
    只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函
    数解析式的这三种形式可以互化.
    知识点八:二次函数的图象与各项系数之间的关系
    1. 二次项系数
    二次函数中,作为二次项系数,显然.
    ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;
    ⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.
    总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.
    2. 一次项系数
    在二次项系数确定的前提下,决定了抛物线的对称轴.
    ⑴ 在的前提下,
    当时,,即抛物线的对称轴在轴左侧;
    当时,,即抛物线的对称轴就是轴;
    当时,,即抛物线对称轴在轴的右侧.
    ⑵ 在的前提下,结论刚好与上述相反,即
    当时,,即抛物线的对称轴在轴右侧;
    当时,,即抛物线的对称轴就是轴;
    当时,,即抛物线对称轴在轴的左侧.
    总结起来,在确定的前提下,决定了抛物线对称轴的位置.
    的符号的判定:对称轴在轴左边,则,在轴的右侧,则,概括的说就是“左同右异”。
    3. 常数项
    ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;
    ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;
    ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.
    总结起来,决定了抛物线与轴交点的位置.
    总之,只要都确定,那么这条抛物线就是唯一确定的.
    知识点九:二次函数图象的对称
    二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
    1. 关于轴对称
    关于轴对称后,得到的解析式是;
    关于轴对称后,得到的解析式是;
    2. 关于轴对称
    关于轴对称后,得到的解析式是;
    关于轴对称后,得到的解析式是;
    3. 关于原点对称
    关于原点对称后,得到的解析式是;
    关于原点对称后,得到的解析式是;
    4.关于顶点对称(即:抛物线绕顶点旋转180°)
    关于顶点对称后,得到的解析式是;
    关于顶点对称后,得到的解析式是.
    5. 关于点对称
    关于点对称后,得到的解析式是
    根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.
    知识点十:二次函数与一元二次方程
    1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):
    一元二次方程是二次函数当函数值时的特殊情况.
    图象与轴的交点个数:
    (1)当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.
    (2)当时,图象与轴只有一个交点;
    (3)当时,图象与轴没有交点.
    ① 当时,图象落在轴的上方,无论为任何实数,都有;
    ②当时,图象落在轴的下方,无论为任何实数,都有.
    2. 抛物线的图象与轴一定相交,交点坐标为,;
    一、二次函数解析式的确定
    根据已知条件确定二次函数解析式,常利用待定系数法.用待定系数法求二次函数解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
    1. 已知抛物线上三点的坐标,一般选用一般式;
    2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;
    4. 已知抛物线上纵坐标相同的两点,常选用顶点式.
    二、二次函数考查重点与常见题类型总结
    类型1.考查二次函数的定义、性质,有关试题常出现在选择题中;
    类型2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题;
    类型3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题;
    类型4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题;
    类型5.考查代数与几何的综合能力,常见的中考题作为专项压轴题。
    三、二次函数常用解题方法总结
    ⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程;
    ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
    ⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;
    ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.
    ⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:


    抛物线与轴有两个交点
    二次三项式的值可正、可零、可负
    一元二次方程有两个不相等实根

    抛物线与轴只有一个交点
    二次三项式的值为非负
    一元二次方程有两个相等的实数根

    抛物线与轴无交点
    二次三项式的值恒为正
    一元二次方程无实数根.




    【例题1】(2020•枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
    ①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.
    其中,正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】C
    【分析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.
    【解析】抛物线开口向下,a<0,对称轴为x1,因此b>0,与y轴交于正半轴,因此c>0,
    于是有:ac<0,因此①正确;
    由x1,得2a+b=0,因此③不正确,
    抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,
    由对称轴x=1,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,
    综上所述,正确的结论有①②④。
    【例题2】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.
    (1)求抛物线的解析式;
    (2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

    【答案】见解析。
    【解析】(1)由题意得,,
    解得b=4,c=3,
    ∴抛物线的解析式为.y=x2﹣4x+3;
    (2)∵点A与点C关于x=2对称,
    ∴连接BC与x=2交于点P,则点P即为所求,
    根据抛物线的对称性可知,点C的坐标为(3,0),
    y=x2﹣4x+3与y轴的交点为(0,3),
    ∴设直线BC的解析式为:y=kx+b,

    解得,k=﹣1,b=3,
    ∴直线BC的解析式为:y=﹣x+3,
    则直线BC与x=2的交点坐标为:(2,1)
    ∴点P的交点坐标为:(2,1).

    【点拨】本题考查的是待定系数法求二次函数的解析式和最短路径问题,掌握待定系数法求解析式的一般步骤和轴对称的性质是解题的关键.
    【例题3】(2020•杭州)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).
    (1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.
    (2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).
    (3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.
    【答案】见解析。
    【分析】(1)利用待定系数法解决问题即可.
    (2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出10,即a()2+b•1=0,推出是方程ax2+bx+1的根,可得结论.
    (3)由题意a>0,∴m,n,根据m+n=0,构建方程可得结论.
    【解析】(1)由题意,得到3,解得b=﹣6,
    ∵函数y1的图象经过(a,﹣6),
    ∴a2﹣6a+a=﹣6,
    解得a=2或3,
    ∴函数y1=x2﹣6x+2或y1=x2﹣6x+3.
    (2)∵函数y1的图象经过点(r,0),其中r≠0,
    ∴r2+br+a=0,
    ∴10,
    即a()2+b•1=0,
    ∴是方程ax2+bx+1的根,
    即函数y2的图象经过点(,0).
    (3)由题意a>0,∴m,n,
    ∵m+n=0,
    ∴0,
    ∴(4a﹣b2)(a+1)=0,
    ∵a+1>0,
    ∴4a﹣b2=0,
    ∴m=n=0.
    《二次函数》单元精品检测试卷
    本套试卷满分120分,答题时间90分钟
    一、选择题(每小题3分,共30分)
    1.(2020•泸州)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为(  )
    A.﹣1 B.2 C.3 D.4
    【答案】C
    【解析】由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,
    ∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,
    由抛物线的对称轴xb,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),
    b,即,c=b﹣1 ②,
    ②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,
    c=b﹣1=2﹣1=1,
    ∴b+c=2+1=3
    2.(2020•绥化)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是(  )
    A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
    C.y=2x2 D.y=2x2+4
    【答案】C
    【分析】根据“左加右减、上加下减”的原则进行解答即可.
    【解析】将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;
    再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.
    3.(2020•滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(  )

    A.3 B.4 C.5 D.6
    【答案】A
    【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【解析】①由图象可知:a>0,c<0,
    ∵1,
    ∴b=﹣2a<0,
    ∴abc<0,故①错误;
    ②∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    ∴b2>4ac,故②正确;
    ③当x=2时,y=4a+2b+c<0,故③错误;
    ④当x=﹣1时,y=a﹣b+c>0,
    ∴3a+c>0,故④正确;
    ⑤当x=1时,y的值最小,此时,y=a+b+c,
    而当x=m时,y=am2+bm+c,
    所以a+b+c≤am2+bm+c,
    故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,
    ⑥当x<﹣1时,y随x的增大而减小,故⑥错误.
    4.(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是(  )
    A.图象的对称轴在y轴的右侧
    B.图象与y轴的交点坐标为(0,8)
    C.图象与x轴的交点坐标为(﹣2,0)和(4,0)
    D.y的最小值为﹣9
    【答案】D
    【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.
    【解析】∵二次函数y=x2+2x﹣8=(x+1)2﹣9=(x+4)(x﹣2),
    ∴该函数的对称轴是直线x=﹣1,在y轴的左侧,故选项A错误;
    当x=0时,y=﹣8,即该函数与y轴交于点(0,﹣8),故选项B错误;
    当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;
    当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确
    5.(2020•河北)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,
    甲:若b=5,则点P的个数为0;
    乙:若b=4,则点P的个数为1;
    丙:若b=3,则点P的个数为1.
    下列判断正确的是(  )

    A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对
    【答案】C
    【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.
    【解析】y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,
    ∴抛物线的顶点坐标为(2,4),
    ∴在抛物线上的点P的纵坐标最大为4,
    ∴甲、乙的说法正确;
    若b=3,则抛物线上纵坐标为3的点有2个,
    ∴丙的说法不正确.
    6.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则a≤﹣1或1≤a;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a或a≥1.其中正确的结论是(  )
    A.①② B.①③ C.②③ D.①②③
    【答案】D
    【解析】∵二次函数y=ax2﹣4ax﹣5的对称轴为直线x,
    ∴x1=2+m与x2=2﹣m关于直线x=2对称,
    ∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;
    故①正确;
    当x=3时,y=﹣3a﹣5,当x=4时,y=﹣5,
    若a>0时,当3≤x≤4时,﹣3a﹣5<y≤﹣5,
    ∵当3≤x≤4时,对应的y的整数值有4个,
    ∴1≤a,
    若a<0时,当3≤x≤4时,﹣5≤y<﹣3a﹣5,
    ∵当3≤x≤4时,对应的y的整数值有4个,
    ∴a≤﹣1,
    故②正确;
    若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,
    ∴△>0,25a﹣20a﹣5≥0,
    ∴,
    ∴a≥1,
    若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,
    ∴△>0,25a﹣20a﹣5≤0,
    ∴,
    ∴a,
    综上所述:当a或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.
    7.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是(  )

    A.a<0
    B.图象的对称轴为直线x=﹣1
    C.点B的坐标为(1,0)
    D.当x<0时,y随x的增大而增大
    【答案】D
    【解析】观察图形可知a<0,由抛物线的解析式可知对称轴x=﹣1,
    ∵A(﹣3,0),A,B关于x=﹣1对称,
    ∴B(1,0),
    故A,B,C正确
    8.(2020•安顺)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是(  )
    A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4
    【答案】B
    【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.
    【解析】∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,
    ∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,
    又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.
    ∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,
    ∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,
    ∴这两个整数根是﹣4或2
    9.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

    A.b2>4ac
    B.abc>0
    C.a﹣c<0
    D.am2+bm≥a﹣b(m为任意实数)
    【答案】C
    【分析】根据二次函数的图象与系数的关系即可求出答案.
    【解析】由图象可得:a>0,c>0,△=b2﹣4ac>0,1,
    ∴b=2a>0,b2>4ac,故A选项不合题意,
    ∴abc>0,故B选项不合题意,
    当x=﹣1时,y<0,
    ∴a﹣b+c<0,
    ∴﹣a+c<0,即a﹣c>0,故C选项符合题意,
    当x=m时,y=am2+bm+c,
    当x=﹣1时,y有最小值为a﹣b+c,
    ∴am2+bm+c≥a﹣b+c,
    ∴am2+bm≥a﹣b,故D选项不合题意.
    10.(2020•衢州)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是(  )
    A.向左平移2个单位,向下平移2个单位
    B.向左平移1个单位,向上平移2个单位
    C.向右平移1个单位,向下平移1个单位
    D.向右平移2个单位,向上平移1个单位
    【答案】C
    【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.
    【解析】A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.
    B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.
    C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.
    D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.
    二、填空题(10个小题,每空3分,共33分)
    11.(2020•泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:
    x
    ﹣5
    ﹣4
    ﹣2
    0
    2
    y
    6
    0
    ﹣6
    ﹣4
    6
    下列结论:
    ①a>0;
    ②当x=﹣2时,函数最小值为﹣6;
    ③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;
    ④方程ax2+bx+c=﹣5有两个不相等的实数根.
    其中,正确结论的序号是   .(把所有正确结论的序号都填上)
    【答案】①③④.
    【分析】任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可.
    【解析】将(﹣4,0)(0,﹣4)(2,6)代入y=ax2+bx+c得,
    ,解得,,
    ∴抛物线的关系式为y=x2+3x﹣4,
    a=1>0,因此①正确;
    对称轴为x,即当x时,函数的值最小,因此②不正确;
    把(﹣8,y1)(8,y2)代入关系式得,y1=64﹣24﹣4=36,y2=64+24﹣4=84,因此③正确;
    方程ax2+bx+c=﹣5,也就是x2+3x﹣4=﹣5,即方x2+3x+1=0,由b2﹣4ac=9﹣4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;
    正确的结论有:①③④
    12.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为   .
    【答案】(1,8).
    【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).
    【解析】∵抛物线y=3(x﹣1)2+8是顶点式,
    ∴顶点坐标是(1,8).
    13.(2020•无锡)请写出一个函数表达式,使其图象的对称轴为y轴:   .
    【答案】y=x2(答案不唯一).
    【分析】根据形如y=ax2的二次函数的性质直接写出即可.
    【解析】∵图象的对称轴是y轴,
    ∴函数表达式y=x2(答案不唯一),
    故答案为:y=x2(答案不唯一).
    14.(2020•上海)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是   .
    【答案】y=x2+3.
    【分析】直接根据抛物线向上平移的规律求解.
    【解析】抛物线y=x2向上平移3个单位得到y=x2+3.
    15.(2020•黔东南州)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是   .

    【答案】﹣3<x<1.
    【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.
    【解析】∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,
    ∴抛物线与x轴的另一个交点为(1,0),
    由图象可知,当y<0时,x的取值范围是﹣3<x<1.
    16. 如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x
    轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是  .

    【答案】.
    【解析】把(0,-3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,把它的坐标代入解析式即可求出答案.
    把(0,﹣3)代入抛物线的解析式得:c=-3,∴y=x2+bx-3.∵确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,假如过(2,0),代入,得0=4+2b﹣3,∴b=.故答案为.
    17. 如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是   .(只要求填写正确命题的序号)

    【答案】①③.
    【解析】由图象可知过(1,0),代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是(﹣3,0),(1,0);由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.
    由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;
    ﹣=﹣1,
    ∴b=2a,∴②错误;
    根据图象关于对称轴对称,
    与X轴的交点是(﹣3,0),(1,0),∴③正确;
    ∵a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.
    故答案为:①③.
    18.如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y_____0(填“>”“=”或“<”号).

    【答案】<.
    【解析】由二次函数根与系数的关系求得关系式,求得m小于0,当x=x2-2时,从而求得y小于0.
    ∵抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),
    ∴x1+x2=2,x1x2=-m>0
    ∴m<0
    ∵x1+x2=2
    ∴x1=2-x2
    ∴x=-x1<0
    ∴y<0故答案为<.
    19.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为   .
    【答案】(﹣1,4).
    【分析】把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.
    【解析】∵y=﹣x2﹣2x+3
    =﹣(x2+2x+1﹣1)+3
    =﹣(x+1)2+4,
    ∴顶点坐标为(﹣1,4).
    20.(2020•乐山)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:
    (1)当﹣1<[x]≤2时,x的取值范围是  ;
    (2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是   .
    【答案】(1)0≤x≤2.
    (2)a<﹣1或a.
    【解析】(1)由题意∵﹣1<[x]≤2,
    ∴0≤x≤2,
    (2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,
    则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,
    或x=2时,4﹣2a+3≤1+3,解得a,
    三、解答题(6小题,共57分)
    21.(7分)(2020•宁波)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).
    (1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.
    (2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.

    【答案】见解析。
    【分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.
    (2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.
    【解析】(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,
    ∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,
    ∴A(2,1),
    ∵对称轴x=2,B,C关于x=2对称,
    ∴C(3,0),
    ∴当y>0时,1<x<3.
    (2)∵D(0,﹣3),
    ∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.
    22.(10分)(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
    (1)求该抛物线的解析式;
    (2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
    ①求直线BD的解析式;
    ②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.

    【答案】见解析。
    【分析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;
    (2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;
    ②先确定出点Q的坐标,设点P(x,x2+x+4)(1<x<4),得出PG=x﹣1,GQx2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQx2+x+3,QH=PG=x﹣1,进而得出R(x2+x+4,2﹣x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.
    【解析】(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),
    ∴设抛物线的解析式为y=a(x+2)(x﹣4),
    将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,
    ∴a,
    ∴抛物线的解析式为y(x+2)(x﹣4)x2+x+4;
    (2)①如图1,
    设直线AC的解析式为y=kx+b',
    将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,
    ∴,
    ∴直线AC的解析式为y=2x+4,
    过点E作EF⊥x轴于F,
    ∴OD∥EF,
    ∴△BOD∽△BFE,
    ∴,
    ∵B(4,0),∴OB=4,
    ∵BD=5DE,
    ∴,
    ∴BFOB4,
    ∴OF=BF﹣OB4,
    将x代入直线AC:y=2x+4中,得y=2×()+4,
    ∴E(,),
    设直线BD的解析式为y=mx+n,
    ∴,
    ∴,
    ∴直线BD的解析式为yx+2;
    ②∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),
    ∴抛物线的对称轴为直线x=1,
    ∴点Q(1,1),如图2,
    设点P(x,x2+x+4)(1<x<4),
    过点P作PG⊥l于G,过点R作RH⊥l于H,
    ∴PG=x﹣1,GQx2+x+4﹣1x2+x+3,
    ∵PG⊥l,∴∠PGQ=90°,
    ∴∠GPQ+∠PQG=90°,
    ∵△PQR是以点Q为直角顶点的等腰直角三角形,
    ∴PQ=RQ,∠PQR=90°,
    ∴∠PQG+∠RQH=90°,
    ∴∠GPQ=∠HQR,
    ∴△PQG≌△QRH(AAS),
    ∴RH=GQx2+x+3,QH=PG=x﹣1,
    ∴R(x2+x+4,2﹣x),
    由①知,直线BD的解析式为yx+2,
    ∴x=2或x=4(舍),
    当x=2时,yx2+x+44+2+4=4,
    ∴P(2,4).

    23.(8分)(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
    (1)求⊙C的标准方程;
    (2)试判断直线AE与⊙C的位置关系,并说明理由.

    【答案】见解析。
    【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt△BCM中,利用勾股定理求出半径以及等C的坐标即可解决问题.
    (2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.
    【解析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.
    ∵与y轴相切于点D(0,4),
    ∴CD⊥OD,
    ∵∠CDO=∠CMO=∠DOM=90°,
    ∴四边形ODCM是矩形,
    ∴CM=OD=4,CD=OM=r,
    ∵B(8,0),
    ∴OB=8,
    ∴BM=8﹣r,
    在Rt△CMB中,∵BC2=CM2+BM2,
    ∴r2=42+(8﹣r)2,
    解得r=5,
    ∴C(5,4),
    ∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.

    (2)结论:AE是⊙C的切线.
    理由:连接AC,CE.
    ∵CM⊥AB,
    ∴AM=BM=3,
    ∴A(2,0),B(8,0)
    设抛物线的解析式为y=a(x﹣2)(x﹣8),
    把D(0,4)代入y=a(x﹣2)(x﹣8),可得a,
    ∴抛物线的解析式为y(x﹣2)(x﹣8)x2x+4(x﹣5)2,
    ∴抛物线的顶点E(5,),
    ∵AE,CE=4,AC=5,
    ∴EC2=AC2+AE2,
    ∴∠CAE=90°,
    ∴CA⊥AE,
    ∴AE是⊙C的切线.

    24.(12分)(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).
    (1)求抛物线的解析式;
    (2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;
    (3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

    【答案】见解析。
    【分析】(1)利用待定系数法解决问题即可.
    (2)求出AB,OA,AC,利用相似三角形的性质求解即可.
    (3)分两种情形:①PA为平行四边形的边时,点M的横坐标可以为±2,求出点M的坐标即可解决问题.②当AP为平行四边形的对角线时,点M″的横坐标为﹣4,求出点M″的坐标即可解决问题.
    【解析】(1)由题意抛物线经过B(0,3),C(1,0),
    ∴,
    解得,
    ∴抛物线的解析式为y=﹣x2﹣2x+3
    (2)对于抛物线y=﹣x2﹣2x+3,令y=0,解得x=﹣3或1,
    ∴A(﹣3,0),
    ∵B(0,3),C(1,0),
    ∴OA=OB=3OC=1,AB=3,
    ∵∠APO=∠ACB,∠PAO=∠CAB,
    ∴△PAO∽△CAB,
    ∴,
    ∴,
    ∴AP=2.
    (3)由(2)可知,P(﹣1,2),AP=2,
    ①当AP为平行四边形的边时,点N的横坐标为2或﹣2,
    ∴N(﹣2,3),N′(2,﹣5),
    ②当AP为平行四边形的对角线时,点N″的横坐标为﹣4,
    ∴N″(﹣4,﹣5),
    综上所述,满足条件的点N的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).

    25.(12分)(2020•聊城)如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.

    【答案】见解析。
    【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可
    (2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),由DE=PF得出方程,解方程进而得出答案;
    (3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则,得出方程,解方程即可.
    【解析】(1)将点A(﹣1,0),B(4,0),代入y═ax2+bx+4,
    得:,
    解得:,
    ∴二次函数的表达式为:y=﹣x2+3x+4,
    当x=0时,y=4,
    ∴C(0,4),
    设BC所在直线的表达式为:y=mx+n,
    将C(0,4)、B(4,0)代入y=mx+n,
    得:,
    解得:,
    ∴BC所在直线的表达式为:y=﹣x+4;
    (2)∵DE⊥x轴,PF⊥x轴,
    ∴DE∥PF,
    只要DE=PF,四边形DEFP即为平行四边形,
    ∵y=﹣x2+3x+4=﹣(x)2,
    ∴点D的坐标为:(,),
    将x代入y=﹣x+4,即y4,
    ∴点E的坐标为:(,),
    ∴DE,
    设点P的横坐标为t,
    则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
    ∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
    由DE=PF得:﹣t2+4t,
    解得:t1(不合题意舍去),t2,
    当t时,﹣t2+3t+4=﹣()2+34,
    ∴点P的坐标为(,);
    (3)存在,理由如下:
    如图2所示:
    由(2)得:PF∥DE,
    ∴∠CED=∠CFP,
    又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
    ∴∠PCF≠∠DCE,
    ∴只有∠PCF=∠CDE时,△PCF∽△CDE,
    ∴,
    ∵C(0,4)、E(,),
    ∴CE,
    由(2)得:DE,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
    ∴CFt,
    ∴,
    ∵t≠0,
    ∴(﹣t+4)=3,
    解得:t,
    当t时,﹣t2+3t+4=﹣()2+34,
    ∴点P的坐标为:(,).

    26.(8分)(2020•黔东南州)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.
    (1)甲、乙两种商品的进货单价分别是多少?
    (2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:
    销售单价x(元/件)
    11
    19
    日销售量y(件)
    18
    2
    请写出当11≤x≤19时,y与x之间的函数关系式.
    (3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?
    【分析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.
    (2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.
    (3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.
    【解析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:

    解得:.
    ∴甲、乙两种商品的进货单价分别是10、15元/件.
    (2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:
    ,解得:.
    ∴y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).
    (3)由题意得:
    w=(﹣2x+40)(x﹣10)
    =﹣2x2+60x﹣400
    =﹣2(x﹣15)2+50(11≤x≤19).
    ∴当x=15时,w取得最大值50.
    ∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.

    相关试卷

    中考数学一轮复习考点梳理+单元突破练习专题27 相似(教师版):

    这是一份中考数学一轮复习考点梳理+单元突破练习专题27 相似(教师版),共46页。

    中考数学一轮复习考点梳理+单元突破练习专题24 圆(教师版):

    这是一份中考数学一轮复习考点梳理+单元突破练习专题24 圆(教师版),共38页。试卷主要包含了圆弧和弦,圆心角和圆周角,内心和外心,圆问题的基本题型,5°.等内容,欢迎下载使用。

    中考数学一轮复习考点梳理+单元突破练习专题23 旋转(教师版):

    这是一份中考数学一轮复习考点梳理+单元突破练习专题23 旋转(教师版),共41页。试卷主要包含了旋转,旋转对称中心,旋转的性质,中心对称图形与中心对称,中心对称图形的判定,中心对称的性质等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map