中考数学一轮复习考点巩固练习专题27 特殊三角形(教师版)
展开
这是一份中考数学一轮复习考点巩固练习专题27 特殊三角形(教师版),共17页。试卷主要包含了如图等内容,欢迎下载使用。
专题27 特殊三角形 考点1:等腰三角形的性质与判定1.(2021·江苏苏州市)如图.在中,,.若,则______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A=∠AEF,再根据三角形的外角和定理得出∠A+∠AEF=∠CFE,求出∠A的度数,最后根据三角形的内角和定理求出∠B的度数即可.【详解】∵ AF=EF,∴ ∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴ ∠A=36°,∵ ∠C=90°,∠A+∠B+∠C=180°,∴ ∠B=180°-∠A-∠C=54°.故答案为:54°.2.(2021·江苏南京市·中考真题)如图,在四边形中,.设,则______(用含的代数式表示).【答案】【分析】由等腰的性质可得:∠ADB=,∠BDC=,两角相加即可得到结论.【详解】解:在△ABD中,AB=BD∴∠A=∠ADB= 在△BCD中,BC=BD∴∠C=∠BDC=∵ ∴ = ===故答案为:.3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O)沿直径对折后,按图1分成六等份折叠得到图2,将图2沿虚线剪开,再将展开得到如图3的一个六角星.若,则的度数为______.【答案】135°【分析】利用折叠的性质,根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC,EO由折叠性质可得:∠EOC=,EC=DC,OC平分∠ECD∴∠ECO=∴∠OEC=180°-∠ECO-∠EOC=135°即的度数为135°故答案为:135°4.(2021·山东中考真题)如图,在中,的平分线交于点,过点作;交于点.(1)求证:;(2)若,求的度数.【答案】(1)见详解;(2)【分析】(1)由题意易得,则有,然后问题可求证;(2)由题意易得,则有,然后由(1)可求解.【详解】(1)证明:∵BD平分,∴,∵,∴,∴,∴;(2)解:∵,∴,由(1)可得.5.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.考点2:等边三角形的性质与判定6.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,的半径为,P为AB边上一动点,过点P作的切线PQ,切点为Q,则PQ的最小值为________.【答案】3【分析】连接OC和PC,利用切线的性质得到CQ⊥PQ,可得当CP最小时,PQ最小,此时CP⊥AB,再求出CP,利用勾股定理求出PQ即可.【详解】解:连接QC和PC,∵PQ和圆C相切,∴CQ⊥PQ,即△CPQ始终为直角三角形,CQ为定值,∴当CP最小时,PQ最小,∵△ABC是等边三角形,∴当CP⊥AB时,CP最小,此时CP⊥AB,∵AB=BC=AC=4,∴AP=BP=2,∴CP==,∵圆C的半径CQ=,∴PQ==3,故答案为:3.7.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 .【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【解析】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.8.(2020•凉山州)如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;(2)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.【解析】(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS); (2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC∵∠BAC=60°,∴∠QMC=60°; (3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变理由:同理可得,△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.考点3:直角三角形的性质9.(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40°,求∠BAC的度数.【分析】(1)根据DE⊥AB,DF⊥AC可得∠BED=∠CFD=90°,由于∠B=∠C,D是BC的中点,AAS求证△BED≌△CFD即可得出结论.(2)根据直角三角形的性质求出∠B=50°,根据等腰三角形的性质即可求解.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵D是BC的中点,∴BD=CD,在△BED与△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF;(2)解:∵∠BDE=40°,∴∠B=50°,∴∠C=50°,∴∠BAC=80°.10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立? .(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.【分析】(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF,推出EF=FD,再证明FD=FC即可解决问题.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解析】(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是. (2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点. (3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DGEC,∵BD=AB=6,在Rt△BDG中,BG,∴CB3,在Rt△ABC中,AC3,∵∠ACB=∠ECD,∠ABC=∠EDC,∴△ABC∽△EDC,∴,∴,∴CD,∴AD=AC+CD=3.11.(2020•常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BEPC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.考点4:勾股定理及其逆定理12.(2021·四川凉山彝族自治州·中考真题)如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为( )A. B.2 C. D.【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴AB==10,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE2=BC2+CE2,∴x2=62+(8-x)2,解得x=,∴CE==,故选:D.
相关试卷
这是一份中考数学一轮复习考点复习专题27 特殊三角形【考点精讲】(含解析),共23页。试卷主要包含了定义,性质,判定等内容,欢迎下载使用。
这是一份中考数学一轮复习考点梳理+单元突破练习专题27 相似(教师版),共46页。
这是一份中考数学一轮复习考点巩固练习专题44 投影与视图(教师版),共11页。