2023届甘肃省兰州市高三下学期3月诊断考试(月考)文科数学试题word版含答案
展开2023年兰州市高三诊断考试
文科数学
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.,,则集合( )
A. B. C. D.
2.已知复数满足,则( )
A. B. C. D.
3.2022年8—12月某市场上草莓价格(单位:元/千克)的取值为:12,16,20,24,28,市场需求量(单位:百千克),则市场需求量的方差为( )
A.8 B.4 C. D.2
4.18世纪数学家欧拉研究调和级数得到了以下的结果:当很大时,(常数).利用以上公式,可以估计的值为( )
A. B. C. D.
5.已知点在圆上,其横坐标为1,抛物线经过点,则抛物线的准线方程是( )
A. B. C. D.
6.已知,,若是与的等比中项,则的最小值是( )
A.8 B.4 C.3 D.2
7.已知命题:“若直线平面,平面平面,则直线平面”,命题:“棱长为的正四面体的外接球表面积是”,则以下命题为真命题的是( )
A. B. C. D.
8.如图是某算法的程序框图,若执行此算法程序,输入区间内的任意一个实数,则输出的的概率为( )
A. B. C. D.
9.攒尖是中国古建筑中屋顶的一种结构形式,常见的有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑,兰州市著名景点三台阁的屋顶部分也是典型的攒尖结构.如图所示是某研究性学习小组制作的三台阁仿真模型的屋顶部分,它可以看作是不含下底面的正四棱台和正三棱柱的组合体,已知正四棱台上底、下底、侧棱的长度(单位:dm)分别为2,6,4,正三棱柱各棱长均相等,则该结构表面积为( )
A. B. C. D.
10.若将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象,则关于函数的四个结论不正确的是( )
A.的最小正周期为 B.在区间上的最小值为
C.在区间上单调递减 D.的图象对称中心为
11.已知双曲线的一条渐近线上存在关于原点对称的两点和,若双曲线的左、右焦点,与,组成的四边形为矩形,若该矩形的面积为,则双曲线的离心率为( )
A. B. C. D.
12.已知函数,其中,,,则以下判断正确的是( )
A.函数有两个零点,,且,
B.函数有两个零点,,且,
C.函数有两个零点,,且,
D.函数只有一个零点,且,
二、填空题:本题共4小题,每小题5分,共20分.
13.在梯形中,,,,则______.
14.如图,圆锥的轴截面是边长为的正三角形,点,是底面弧的两个三等分点,则与所成角的正切值为______.
15.用长度为1,4,8,9的4根细木棒围成一个三角形(允许连接,不允许折断),则其中某个三角形外接圆的直径可以是______(写出一个答案即可).
16.定义:如果任取一个正常数,使得定义在上的函数对于任意实数,存在非零常数,使,则称函数是“函数”.在①,②,③,④这四个函数中,为“函数”的是______(只填写序号).
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)已知数列,,对任意的都有.
(1)求的通项公式;
(2)数列满足:,且,求数列的前项和.
18.(12分)如图所示的五边形中是矩形,,,沿折叠成四棱锥,点是的中点,.
(1)在四棱锥中,可以满足条件①;②;③,请从中任选两个作为补充条件,证明:侧面底面;(注:若选择不同的组合分别解答,则按第一个解答计分.)
(2)在(1)的条件下求点到平面的距离.
19.(12分)2022年第22届世界杯足球赛在卡塔尔举行,这是继韩日世界杯之后时隔20年第二次在亚洲举行的世界杯足球赛,本届世界杯还是首次在北半球冬季举行的世界杯足球赛.每届世界杯共32支球队参加,进行64场比赛,其中小组赛阶段共分为8个小组,每个小组的4支队伍进行单循环比赛共计48场,以积分的方式产生16强,之后的比赛均为淘汰赛,1/8决赛8场产生8强,1/4决赛4场产生4强,半决赛两场产生2强,三四名决赛一场,冠亚军决赛一场.下表是某五届世界杯32进16的情况统计:
| 欧洲球队 | 美洲球队 | 非洲球队 | 亚洲球队 | ||||
32强 | 16强 | 32强 | 16强 | 32强 | 16强 | 32强 | 16强 | |
1 | 13 | 10 | 9 | 4 | 5 | 1 | 5 | 1 |
2 | 13 | 10 | 10 | 5 | 5 | 1 | 4 | 0 |
3 | 13 | 6 | 10 | 8 | 5 | 2 | 4 | 0 |
4 | 14 | 10 | 8 | 5 | 5 | 0 | 5 | 1 |
5 | 13 | 8 | 8 | 3 | 5 | 2 | 6 | 3 |
合计 | 66 | 44 | 45 | 25 | 25 | 6 | 24 | 5 |
(1)根据上述表格完成列联表:
| 16强 | 非16强 | 合计 |
欧洲地区 |
|
|
|
其他地区 |
|
|
|
合计 |
|
|
|
并判断是否有95%的把握认为球队进入世界杯16强与来自欧洲地区有关?
(2)已知某届世界杯比赛过程中已有2支欧洲球队进入8强并相遇,胜者进入4强,此时球迷预测还将有3支欧洲球队,2支美洲球队,1支亚洲球队进入8强,并在这6支球队中两两对决进行3场比赛,产生剩下的三个4强席位,求欧洲球队不碰面的概率.
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
20.(12分)已知,是椭圆的左、右焦点,是椭圆的短轴,菱形的周长为8,面积为,椭圆的焦距大于短轴长.
(1)求椭圆的方程;
(2)若是椭圆内的一点(不在的轴上),过点作直线交于,两点,且点为的中点,椭圆的离心率为,点也在上,求证:直线与相切.
21.(12分)已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数的图象与轴交于,两点,且点在右侧.若函数在点处的切线为,求证:当时,.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
[选修4-4:坐标系与参数方程]
22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,其中.
(1)当时曲线与曲线交于、两点,求线段的长度;
(2)过点的直线的参数方程为(为参数)与曲线交于、两点,若,求实数.
[选修4-5:不等式选讲]
23.(10分)已知.
(1)解不等式;
(2)若对于任意正实数,不等式恒成立,求实数的取值范围.
2023届甘肃省兰州市高三下学期3月诊断考试(月考)文科数学试题含解析: 这是一份2023届甘肃省兰州市高三下学期3月诊断考试(月考)文科数学试题含解析,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023届甘肃省兰州市高三下学期3月诊断考试(月考)文科数学试题PDF版含答案: 这是一份2023届甘肃省兰州市高三下学期3月诊断考试(月考)文科数学试题PDF版含答案,文件包含甘肃省兰州市2023届高三下学期诊断考试文科数学试题pdf、2023年高三诊断-文科数学答案pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
2023届甘肃省兰州市高三下学期3月诊断考试(月考)理科数学试题含解析: 这是一份2023届甘肃省兰州市高三下学期3月诊断考试(月考)理科数学试题含解析,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。