所属成套资源:2023年中考数学考前收心练习卷(含答案)
- 2023年中考数学考前收心练习卷七(含答案) 试卷 0 次下载
- 2023年中考数学考前收心练习卷三(含答案) 试卷 0 次下载
- 2023年中考数学考前收心练习卷十(含答案) 试卷 0 次下载
- 2023年中考数学考前收心练习卷四(含答案) 试卷 0 次下载
- 2023年中考数学考前收心练习卷一(含答案) 试卷 0 次下载
2023年中考数学考前收心练习卷五(含答案)
展开
这是一份2023年中考数学考前收心练习卷五(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学考前收心练习卷五一 、选择题1.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律2.如图,已知⊙O两条弦AC,BD相交于点E,∠A=70°,∠C=50°,那么sin∠AEB值为( ) A. B. C. D. 3.下列四张扑克牌图案中,属于中心对称的是( )4.一个几何体的三视图如图所示,则这个几何体是( )5.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得( )A. B. C. D.6.如图,直线y=x﹣3与双曲线y=的图象交于A、B两点,则不等式|x﹣3|>||的解集为( )A.﹣1<x<0或x>4 B.﹣1<x<0或0<x<4 C.x<﹣1或x>4 D.x<﹣1或0<x<4 7.在平行四边形ABCD中,∠A的平分线交DC于E,若∠DEA=30°,则∠B=( ).A100° B.120° C.135° D.150°8.如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形的面积为( ) A.84cm2 B.90cm2 C.126cm2 D.168cm2二 、填空题9.式子有意义的条件是_______________.10.给出下列函数:①y=2x-1;②y=-x;③y=-x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是________.11.因式分解:a3﹣4ab2= .12.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为 .13.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .14.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为 .三 、解答题15.解方程组:. 16.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为 元;用方案二处理废渣时,每月利润为 元(利润=总收人-总支出).(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算? 17.如图,△ABC中,AB=AC,点D为BC边上一点,且DA=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连接DE.(1)求证:AC是⊙O的切线;(2)若sinC=0.8,AC=12,求⊙O的直径. 18.如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
0.参考答案1.答案为:D;2.D3.答案为:B4.D.5.B6.答案为:C.7.B8.答案为:C9.答案为:x≥2且x≠310.答案为:; 11.答案为:a(a+2b)(a﹣2b).12.答案为:6.13.答案为:5.14.答案为:15.15.解:x=1,y=1. 16.解:(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x;故答案为:400x-2000,350x;(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000;(3)令400x-2000=350x,解得x=40即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.17.解:(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.18.解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,∵S△ABD=S△AOD+S△OBD﹣S△AOB=×4×(﹣t2﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为:(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).
相关试卷
这是一份2023年中考数学考前收心练习卷一(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学考前收心练习卷十(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学考前收心练习卷七(含答案),共8页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。