所属成套资源:2023年高考第二次模拟考试卷
2023年高考政治第二次模拟考试卷—数学(全国乙卷文)(考试版)
展开这是一份2023年高考政治第二次模拟考试卷—数学(全国乙卷文)(考试版),共7页。
2023年高考数学第二次模拟考试卷
高三数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回
一、选择题:本小题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一个是符合要求的。
1.已知集合,,则( )
A. B. C. D.
2.若复数满足,则( )
A. B. C.2 D.
3.如图,在中,,则( )
A.9 B.18 C.6 D.12
4.下表是足球世界杯连续八届的进球总数:
年份 | 1994 | 1998 | 2002 | 2006 | 2010 | 2014 | 2018 | 2022 |
进球总数 | 141 | 171 | 161 | 147 | 145 | 171 | 169 | 172 |
则进球总数的第40百分位数是( )
A.147 B.154 C.161 D.165
5.记不等式组的解集为D,现有下面四个命题:
,;,;
,;,.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
6.截至2023年2月,“中国天眼”发现的脉冲星总数已经达到740颗以上.被称为“中国天眼”的500米口径球面射电望远镜(FAST),是目前世界上口径最大,灵敏度最高的单口径射电望远镜(图1).观测时它可以通过4450块三角形面板及2225个触控器完成向抛物面的转化,此时轴截面可以看作拋物线的一部分.某学校科技小组制作了一个FAST模型,观测时呈口径为4米,高为1米的抛物面,则其轴截面所在的抛物线(图2)的顶点到焦点的距离为( )
A.1 B.2 C.4 D.8
7.执行下面的程序框图,则输出S的值为( )
A. B. C. D.
8.函数的部分图象大致是( )
A. B.C. D.
9.如图,在三棱柱中,侧棱底面,,,,三棱柱外接球的球心为O,点E是侧棱上的一个动点.下列判断不正确的是( )
A.直线与直线是异面直线 B.一定不垂直于
C.三棱锥的体积为定值 D.的最小值为
10.在等比数列中,若,前3项和,则公比的值为( )
A.1 B. C.1或 D.或
11.设函数,在上的导函数存在,且,则当时( )
A. B.
C. D.
12.已知, , ,则( )
A. B. C. D.
二、填空题:本小题共4小题,每小题5分,共50分。
13.在数列中,,,则______.
14.安排,,,,五名志愿者到甲,乙两个福利院做服务工作,每个福利院至少安排一名志愿者,则,被安排在不同的福利院的概率为______.
15.写出同时满足条件①②的一个圆的方程______.①与圆,圆都相切;②半径为1.
16.设奇函数的定义域为,且对任意,都有.若当时,,且,则不等式的解集为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分
17.(12分)已知.在中,,.
(1)求角的大小;
(2)若,,求的值及边上的高.
18.(12分)如图,边长是6的等边三角形和矩形.现以为轴将面进行旋转,使之形成四棱锥,是等边三角形的中心,,分别是,的中点,且,面,交于.
(1)求证面
(2)求和面所成角的正弦值.
19.(12分)随着科技的进步和人民生活水平的提高,电脑已经走进了千家万户,成为人们生活、学习、娱乐的常见物品,便携式电脑(俗称“笔记本”)也非常流行.某公司为了研究“台式机”与“笔记本”的受欢迎程度是否与性别有关,在街头随机抽取了50人做调查研究,调查数据如下表所示.
| 男性 | 女性 | 合计 |
喜欢“台式机” | 20 | 5 | 25 |
喜欢“笔记本” | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(1)是否有99%的把握认为喜欢哪种机型与性别有关?
(2)该公司针对男性客户做了调查,某季度男性客户中有青年324人,中年216人,老年108人,按分层抽样选出12人,又随机抽出3人的调查结果进行答谢,这3人中的青年人数设为随机变量,请求出的分布列与数学期望.
附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | |
2.701 | 3.841 | 5.024 | 6.635 |
20.(12分)设椭圆:的右焦点恰好是抛物线的焦点,椭圆的离心率和双曲线的离心率互为倒数.
(1)求椭圆E的标准方程;
(2)设椭圆E的左、右顶点分别为A,B,过定点的直线与椭圆E交于C,D两点(与点A,B不重合).证明:直线AC,BD的交点的横坐标为定值.
21.(12分)已知函数.
(1)若,求函数的单调区间;
(2)若函数有两个不同的零点,求证:.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多选,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)
22.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的极坐标方程和直线的直角坐标方程;
(2)若直线与轴交于点A,点在曲线上运动,求直线斜率的最大值.
[选修4-5:不等式选讲](10分)
23.已知函数.
(1)在坐标系中作出函数的图象;
(2)若,求实数的取值范围.
相关试卷
这是一份数学(全国乙卷文)-2023年高考第二次模拟考试卷,文件包含数学全国乙卷文全解全析docx、数学全国乙卷文考试版docx、数学全国乙卷文参考答案docx等3份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份数学(全国乙卷理)-2023年高考第二次模拟考试卷,文件包含数学全国乙卷理全解全析docx、数学全国乙卷理考试版docx、数学全国乙卷理参考答案docx等3份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份2023年高考政治第二次模拟考试卷—数学(全国乙卷理)(考试版),共7页。试卷主要包含了设F为抛物线C等内容,欢迎下载使用。